

PRINCIPLES OF A	RTIFICIAL	INTELLIGENCE	
(Effective from th	e Academic `	Year 2023 - 2024)	
IV	SEMESTE	R	
Course Code	AM422I1A	CIA Marks	50
Number of Contact Hours/Week (L: T: P: S)	3:0:2:0	SEE Marks	50
Total Hours of Pedagogy	40L + 20P	Exam Hours	03
	CREDITS – 4		
COURSE PREREQUISITES:			
	1 1		
• Fundamental knowledge of mathematica COURSE OBJECTIVES:	il concepts, anal	yucal skills and programming.	
• Gain a historical perspective of AI and it	e foundations		
 Can a instorteal perspective of AI and it Learn the methods of solving problems u 			
 Learn the knowledge representation tech 	-	ncepts and planning	
 Investigate applications of AI techniques 			
TEACHING - LEARNING STRATEGY:	,		
Following are some sample strategies that can	-	or the Course Delivery	
1. Chalk and Talk Method/Blended Mode M	Method		
2. Power Point Presentation			
3. Expert Talk/Webinar/Seminar			
4. Video Streaming/Self-Study/Simulations	5		
5. Peer-to-Peer Activities			
6. Activity/Problem Based Learning			
7. Case Studies			
8. MOOC/NPTEL Courses			
9. Any other innovative initiatives with resp	JRSE CONTE		
	MODULE - I	15	
Introduction to AI: Intelligent systems, Fou		th area of AI Applications Tic-	0.11
Tac-Toe Game playing, Currents trend and			8 Hours
Characteristics of problem, Constraint satisfact		si in, ceneral problem solving,	
,,			
	MODULE - II		
Search Techniques and Game playing: Ex		_	8 Hours
AO* Algorithm, Game playing, Bounded look	c-ahead strategy	, Alpha-beta pruning, Two-player	
parfact information comes			
perfect information games.			
 	MODULE - III		
Logic concepts and Prolog Programming	concepts: Proj	positional calculus, Propositional	8 Hours
 	concepts: Proj ystem, Semanti	positional calculus, Propositional calculus, Propositional c tableau system in Propositional	

				_	/ _	Ν	IODUI	MANGA						
Plannin Logic b knowle represen	based dge r	plannir epreser	ng, Line ntation,	ear pla Knov	nning ı	ion: Ty ising C repres	pes of Joal sta	planni ck, Me n using	ng syste eans-En g sema	ds ana	lysis, A	Approac	thes to	8 Hours
						N	10DU	LE - V						0.11
Expert system, systems	Exp	ert sys	tem ve	ersus t	radition	nal sys	tems,	Rule-ba	ased ex				-	8 Hours
						COU	RSE O	UTCO	MES					
Upon c	omple	tion of	this co	urse, tl	ne stude	ents wi	ll be ab	le to:						
CO No.	Course Outcome Description							Ta	Bloom's axonomy Level					
CO1	Dem	onstrat	the fu	undame	ental ur	nderstai	nding o	f AI an	d its for	undatio	ons.			CL3
CO2	App	ly the k	nowled	lge of A	AI in se	earch te	echniqu	es and	game p	laying				CL3
CO3	Demonstrate the Logic concepts and Logic programming in AI.							CL3						
CO4	Apply principles of AI in knowledge representation and planning.								CL3					
CO5	App	ly AI te	echniqu	es to d	evelop	intellig	gent sys	stems.						CL3
	1				LAB	ORAT	ORY	COMP	ONEN	TS				
Exp. No.]	E xperi i	ment D)escrip	tion				CC No	Ta	Bloom's Ixonomy Level
1	Desi	gn and	impler	nent Ti	c-Tac-	Toe ga	me usir	ng Pyth	on prog	rammi	ing.	CO	1	CL3
2	Dem	onstrat	e Nim	game t	ising P	ython p	orogram	nming.				CO	2	CL3
3		-	gram to	-								CO	2	CL3
4	Write a python program to demonstrate the working of Alpha-BetaCO2Pruning.CO2						2	CL3						
5	Demonstrate the Union and Intersection of two fuzzy Sets using python programming.						3	CL3						
6	Write a program in Prolog to implement simple arithmetic.CO3								CL3					
7	Design and implement a Cross word puzzle using Python programming.CO4Demonstrate a simple Chatbot with minimum 10 conversations.CO5							CL3						
8	Dem	onstrat	e a sim	ple Ch						ons.		CO	5	CL3
CO No.							D-PSO Outcon						Sp	gramme oecific me (PSO)
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	2	1	2				1	1		1		
CO2 CO3	3	3	2	1	2				1	1		1		
CUS	3	3	Z		2				1	1				

SAHYADRI CO

CO4	3	3	2	2			1	1			
C O 5	3	3	2	2			1	1		1	
3:	Subs	tantial	(High)	2: N	Ioderate	(Mediu	n)			1: Poor	· (Low)
ssessinethod		will be	both CIA a	ASS and SEE. Stu	ESSMEN dents lear		_		using D	irect an	d Indirect
Sl. No.		As	ssessment		Weigh	tage (%)		Max	. Marks	
1	Con	tinuou	s Internal	Assessment	(CIA)	10	0 %				50
	Continuous Internal Evaluation (CIE)					6	0 %				30
	Practical Session (Laboratory Component)					4	0 %	2		20	
2	Sem	ester I	End Exam	ination (SEI	E)	100 %			50		50
				AS	SESSME	NT DET	FAILS				
	C	ontinu	ous Interi	nal Assessme	ent (CIA)	(50%)					
Cont	Continuous Internal Evaluation (CIE) (60%)				Pra	Practical Sessions			Semester End Exam (SEE) (50%)		
Ι			II	III		(40%)				
	1	Syllabu	is Covera	ge	Syl	labus Co	overage		S	yllabu	s Coverage
40	%		30%	30%		100%	Ó			1	00%
Μ	Ι					MI					MI
Μ	II		MII			MII]	MII
			MIII			MIII				Ν	AIII
				MIV		MIV				Ν	ЛIV
				MV		MV			MV		MV

EERING & MANAGEMENT

An Autonomous Institution MANGALURU

- Assessment will be both CIA and SEE.
- The practical sessions of the IPCC shall be for CIE only.
- The Theory component of the IPCC shall be for both CIA and SEE respectively.
- The questions from the practical sessions shall be included in Theory SEE.

Note: For Examinations (both CIE and SEE), the question papers shall contain the questions mapped to the appropriate Bloom's Level. Any COs mapped with higher cognitive Bloom's Level may also be assessed through the assignments.

SEE QUESTION PAPER PATTERN:

- 1. The question paper will have **TEN** full questions from **FIVE** Modules
- 2. There will be 2 full questions from each module. Every question will carry a maximum of 20 marks.
- 3. Each full question may have a maximum of four sub-questions covering all the topics under a module.
- 4. The students will have to answer FIVE full questions, selecting one full question from each module.

REFERENCE BOOKS:

 Saroj Kaushik, Artificial Intelligence, Cengage Learning India Private Limited, 1st Edition, 2011, ISBN: 978-8131510995.

- 2. Elaine Rich and Kevin Knight, Artificial Intelligence, Tata McGraw Hill Publications, 3rd Edition, 2019, ISBN: 9780070087705.
- 3. Stuart Jonathan Russell, Peter Norvig, Artificial Intelligence: A Modern Approach, Pearson Publications, 3rd Edition, 2016, ISBN: 9781292153964.

REFERENCE WEB LINKS AND VIDEO LECTURES (E - RESOURCES):

- 1. https://onlinecourses.nptel.ac.in/noc22_cs56
- 2. https://onlinecourses.nptel.ac.in/noc23_ge40

REFERENCE WEB LINKS AND VIDEO LECTURES (E - RESOURCES):

- 1. https://onlinecourses.nptel.ac.in/noc22_cs93/unit?unit=17&lesson=18
- 2. https://onlinecourses.nptel.ac.in/noc22_cs93/unit?unit=26&lesson=27
- 3. https://onlinecourses.nptel.ac.in/noc22_cs93/unit?unit=43&lesson=44
- 4. https://onlinecourses.nptel.ac.in/noc22_cs93/unit?unit=52&lesson=53
- 5. https://onlinecourses.nptel.ac.in/noc22_cs93/unit?unit=75&lesson=76

_	he Academic	Year 2023 - 2024)	
I	V SEMESTE	R	
Course Code	CS422I2C	CIA Marks	50
Number of Contact Hours/Week (L: T: P: S)	3:0:2:0	SEE Marks	50
Cotal Hours of Pedagogy	40L + 20P CREDITS - 4	Exam Hours	03
COURSE PREREQUISITES:	CREDITS - 4		
-			
1. C Programming, Data Structures, Obje	ct Oriented Prog	ramming, Computer Orga	nization
COURSE OBJECTIVES:			
he course will enable the student to			
Obtain awareness on concepts of opera	ting systems and	d structures.	
Understand and implement the concept			
3. Demonstrate the common synchroniza			stems and provide
solutions to them		initing in the operating by	
 Demonstrate the issue of deadlock and 	handle them eff	ectively	
 Demonstrate the issue of deadlock and Understand the concept of Memory and 		-	us stratagias
			-
6. Know the various storage mechanisms	available and di	scuss the management of	storage space.
TEACHING - LEARNING STRATEGY:			
following are some sample strategies that car	n be incorporate	for the Course Delivery	
1.Chalk and Talk Method/Blended Mode	Method		
2.PowerPoint Presentation			
3.Expert Talk/Webinar/Seminar			
4. Video Streaming/Self-Study/Simulation	ns		
5.Peer-to-Peer Activities			
6.Activity/Problem Based Learning			
7.Case Studies			
8.MOOC/NPTEL Courses			
9. Any other innovative initiatives with re	espect to the Cou	rse contents	
СО	URSE CONTE	NTS	
	MODULE - I		
Operating Systems and Structures: Introc ystems, multiprocessors systems, clustered			Hours

mode and multimode operations, Distributed systems, Computing environments, Operating

System services, System Calls, Linkers and Loader, Operating system design and

implementation, Operating System Structures

Process Management: Process concept, process state, process control block, context switch;

operations on processes, inter process communication.

MODULE - II

Multi-T	hreaded Programming: Overview of threads, multithreading models, thread libraries, threadi	ng
issues.		
CPU Sc	heduling: Schedulers, Pre-emptive and non-pre-emptive scheduling, dispatcher; Scheduling Criteria	. 8 Hours
Schedul	ing Algorithms: FCFS, SJF, SRTF, RR, Priority, HRRN, multi-level feedback Queue schedulir	ıg,
Multipro	bcessor scheduling.	
	MODULE - III	- 1
Process		n
hardwar	e- mutex, semaphores, monitors.	
Deadloc	eks: System model, necessary conditions for deadlocks, methods for handling deadlock	^{8,} 8 Hours
deadloc	k prevention, deadlock avoidance -resource allocation graph algorithm, banker's algorithm	n,
deadloc	k detection, recovery from deadlock	
	MODULE - IV	
Memory	Wanagement: Background, contiguous memory allocation, paging, swapping.	
Virtual	Memory Management: Background; demand paging: copy-on-write; page replacement algorithms	-
FIFO, O	ptimal, LRU; thrashing	8 Hours
File Sys	stem Interface and Operations: Access methods, Directory structures, Protection, File system	n
structure	e, Directory implementation, Allocation methods, Free space management.	
	MODULE - V	
Storage	Management and Security: Mass storage structures; Disk scheduling algorithms, Swap space	e
manager	nent.	
Protecti	on: Goals, Principles and Domains of protection, Access matrix, Implementation of access matrix	, 8 Hours
Revocati	ion of access rights, Access control.	
	COURSE OUTCOMES	
Upon co	mpletion of this course, the students will be able to:	
		Bloom's
CO No.	Course Outcome Description	Taxonomy
	Identify the structure of an operating system and concept of Process along with inter- process	Level
CO1	communication.	CL3
CO2	Apply the concepts of multi-threading and CPU scheduling algorithms by considering different	CL3
	scheduling criteria.	020
COL	Demonstrate the concepts of Process synchronization and Identify root causes of deadlock to	
CO3	provide the solution for deadlock elimination.	CL3
	Explore the concept of memory management, working of various page replacement algorithms	
CO4	and file system operations.	CL3
CO5	Analyze Disk Storage Structures and the concepts of OS protection.	CL4
Mond	atory Experiment (for practice only not to be included for every):	
wianda	atory Experiment (for practice only, not to be included for exam):	

- 1. Demonstrate the system assembly and disassembly of computer hardware components
- 2. Demonstrate the OS installation with Multi Booting and Virtual Machine platform.

Exp. No.	Experiment Description										CO No.	Bloom's Taxonomy Level		
1		Write C programs to implement basic UNIX system calls - read(), write(), open(), close(), lseek(), create().									CO5	CL3		
2		C prog			nent UN	NIX Dire	ectory A	API's -	opendii	, closed	ir, read	dir,	CO5	CL3
3	(), ge	tpid (), w	vaitpid (), exec,	exit (), r								CO1	CL3
4	Mess	ages Que	eues, and	d Shared	l Memo	•					_		CO1	CL3
5	Robir	Simulate the following CPU scheduling algorithms 1. FCFS 2. SJF 3. Priority 4. Round Robin.Calculate Average Waiting Time, Average Turn-Around Time, Average Response time for each algorithm.									CO2	CL3		
6	a. Pro	ducer-C	onsume	r b. Dini	ing Phil	1	-		ation us	ing sem	aphores		CO3	CL3
7	Demonstrate following page replacement algorithms: a. FIFO, b. LRU, c. OPTIMAL.									CO4	CL3			
8	Analyze the seek time for the following Disk scheduling algorithms – 1. FCFS; 2. SCAN; 3. LOOK								CO5	CL4				
					(CO-PO-	PSO I	MAPPI	NG					
CO No.					Progra	mme O	utcom	es (PO)						rogramme Specific tcome (PSO)
	1	2	3	4	5	6	7	8	9	10	11	12	1	. 2
CO1	3	3	3	1								2	2	2
CO2	3	3	3	1								2	2	2
CO3	3	3	3	1								2	2	2
CO4	3	3	3	1								2	2	2
CO5	3	3	3	1								2	2	2
		3: Substantial (High) 2: Moder					rate (Medium) 1: Po)	
	3: Subs	stantial	(High)			2: Mode	erate (N	Tearum)		_	l: Poo	or (Low	,
				CIA and	AS	2: Mode	IENT S	STRAT	EGY	ed using				
	Assessm	ent will	be both	sment I	AS 1 SEE. S Descript	SSESSM Students	IENT S	STRAT g will b We	EGY e assess eightage	•		and Ir	ndirect n Max. N	nethods: Iarks
Ą	Assessm	ent will	be both Asses	sment I Assessi	AS d SEE. S Descript ment (C	SSESSM Students tion TA)	IENT S	STRAT g will b We	EGY e assess eightage 00 %	•		and Ir	ndirect n Max. M 50	nethods: Iarks
A Sl. No.	Assessm Cont	ent will inuous I Continuo	be both Assess Internal	sment I Assess rnal Eva	AS d SEE. S Descript ment (C luation	SSESSM Students tion TA)	IENT S	STRAT g will b We	EGY e assess eightage	•		and Ir	ndirect n Max. N	nethods: Iarks

ASSESSMENT DETAILS

An Autonomous Institution MANGALURU

EERING & MANAGEMENT

	Continuous Inte	Semester End Exam (SEE) (50%)				
Continuous I	nternal Evaluatio	on (CIE) (60%)	Practical Sessions (40%)			
I II III						
1	Syllabus Coverag	ge	Syllabus Coverage	Syllabus Coverage		
30%	30%	40%	100%	100%		
MI			MI	MI		
MII	MII		MII	MII		
	MIII		MIII	MIII		
		MIV	MIV	MIV		
		MV	MV	MV		

NOTE:

- 1. Assessment will be both CIA and SEE.
- 2. The practical sessions of the IPCC shall be for CIE only.
- 3. The Theory component of the IPCC shall be for both CIA and SEE respectively.
- 4. The questions from the practical sessions shall be included in Theory SEE.

Note: For Examinations (both CIE and SEE), the question papers shall contain the questions mapped to the appropriate Bloom's Level. Any COs mapped with higher cognitive Bloom's Level may also be assessed through the assignments.

SEE QUESTION PAPER PATTERN:

- The question paper will have **TEN** full questions from **FIVE** Modules
- There will be 2 full questions from each module. Every question will carry a maximum of 20 marks.
- Each full question may have a maximum of four sub-questions covering all the topics under a module.
- The students will have to answer FIVE full questions, selecting one full question from each module.
- The paper shall mandatorily contain the questions from the laboratory component of the course

REFERENCE BOOKS:

- Abraham Silberschatz, Peter Baer Galvin, Greg Gagne, "Operating System Principles", 10th edition, Wiley-India, 2021
- M. Morris Mano, "Computer System Architecture", PHI, 3rd Edition
- Ann McHoes, Ida M Fylnn, "Understanding Operating System", Cengage Learning, 6th Edition
- D.M Dhamdhere, "Operating Systems: A Concept Based Approach", 3rd Edition, McGraw-Hill, 2013.
- P.C.P. Bhatt, "An Introduction to Operating Systems: Concepts and Practice", 4th Edition, PHI(EEE), 2014.
- William Stallings, "Operating Systems: Internals and Design Principles", 6th Edition, Pearson.

REFERENCE WEB LINKS AND VIDEO LECTURES (E - RESOURCES):

- 1. https://www.geeksforgeeks.org/operating-systems/
- 2. https://www.youtube.com/watch?v=RozoeWzT7IM&list=PLdo5W4Nhv31a5ucW_S1K3-x6ztBRD-PNa
- 3. https://en.wikipedia.org/wiki/Operating_system
- 4. https://www.youtube.com/watch?v=By6lWjiPpVI&list=PLG9aCp4uE-s17rFjWM8KchGlffXgOzzVP
- 5. https://www.youtube.com/watch?v=bkSWJJZNgf8&list=PLxCzCOWd7aiGz9donHRrE9I3Mwn6XdP8

COMPUTER ORGANIZATION AND ARCHITECTURE

(Effective from the A	Academic Year 2023 - 2024)
	EMESTED

Course Code	CS422T3C	CIA Marks	50		
Number of Contact Hours/Week (L: T: P: S)	3:0:0:0	SEE Marks	50		
Total Hours of Pedagogy	40L	Exam Hours	03		
CREDITS – 3					

COURSE PREREQUISITES:

1. Fundamental knowledge of basic logic design principles and various function of digital computer..

COURSE OBJECTIVES:

- 2. Understand the organization and architecture of computer systems, their structure and operation
- 3. Illustrate the concept of machine instructions and programs
- 4. Demonstrate different ways of communicating with I/O devices
- 5. Describe different types memory devices and their functions
- 6. Explain arithmetic and logical operations with different data types
- 7. Demonstrate processing unit with parallel processing and pipeline architecture

TEACHING - LEARNING STRATEGY:

Following are some sample strategies that can be incorporate for the Course Delivery

- 1. Chalk and Talk Method/Blended Mode Method
- 2. Power Point Presentation
- 3. Expert Talk/Webinar/Seminar
- 4. Video Streaming/Self-Study/Simulations
- 5. Peer-to-Peer Activities
- 6. Activity/Problem Based Learning
- 7. Case Studies
- **8.** MOOC/NPTEL Courses
- 9. Any other innovative initiatives with respect to the Course contents

COURSE CONTENTS

MODULE - I

Basic Structure of Computers: Basic Operational Concepts, Bus Structures, Performance –				
Processor Clock, Basic Performance Equation, Clock Rate, Performance Measurement.	l I			
Machine Instructions and Programs: Memory Location and Addresses, Memory Operations,				
Instructions and Instruction Sequencing, Addressing Modes				

Textbook 1: Chapter1 – 1.3, 1.4, 1.6 (1.6.1-1.6.4, 1.6.7), Chapter2 – 2.2 to 2.5 MODULE - II

Input/Output Organization: Accessing I/O Devices, Interrupts – Interrupt Hardware, Direct 8 Hours

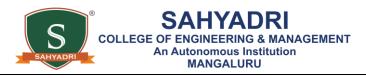
Memory Access, Buses, Interface Circuits

Textbook 1: Chapter4 – 4.1, 4.2, 4.4, 4.5, 4.6

MODULE - III

SAHYADRI	SAHYADRI COLLEGE OF ENGINEERING & MANAGEMENT An Autonomous Institution MANGALURU

Memor	w Sw	stom	Rasic (Concer	ts Son	nicondi	ictor R	AM N	Iemorie	oc Rea	d Only	y Mem	ories	0	
				-							•	y wieni	orres,	8	Hours
Speed,	, Size, and Cost, Cache Memories – Mapping Functions, Virtual memories ook 1: Chapter 5 – 5.1 to 5.4, 5.5 (5.5.1, 5.5.2)														
Textbo	ok 1:	Chapt	er 5 – :	5.1 to !	5.4, 5.5	(5.5.1,	5.5.2)								
								LE - IV							
Arithm	etic:	Numb	ers, Ar	ithmet	ic Oper	rations	and C	haracte	ers, Ad	dition	and Su	ibtraction	on of		
Signed	Numł	bers, D	esign o	f Fast .	Adders,	Multip	plicatio	n of Po	ositive I	Number	rs Basi	c Proce	ssing		
Unit: H	Funda	mental	Conce	epts, E	Executio	on of	a Con	nplete	Instruc	tion, I	Hardwi	red co	ntrol,	8	Hours
Microp	rograi	nmed o	control												
_	-														
Textbo	ok 1:	Chapt	er2-2.1	l, Chaj	pter6 –				1: Cha	apter7	– 7.1, ′	7.2,7.4,	7.5		
Pinelin	e an	d Vec	tor Pi	ocessi	no. Pa		IODUI Proces		Pipelini	ng A	rithme	tic Pin	eline	8	Hours
-					U			0	ipeiiii	115, 71	intillite (ite i ip	enne,		Houre
Instruct		ipenne,	, vecto	FIOCE	ssing, <i>I</i>	Allay F	Tocess	018							
Textbo	ok 2:	Chapt	er 9 _ 9	9.1. 9.2	2. 9.3. 9	.4. 9.6.	9.7								
10100	<u> </u>	Chapt		,				UTCO	MES						
Upon c	omple	etion of	this co	ourse, t	he stude	ents wi	ll be ab	ole to:							
СО					C	04	1	D							oom's
No.					Cour	se Out	come I	Descrij	otion						konom Level
CO1	-		-			hitectu	re of co	ompute	er syster	ns with	n mach	ine			CL2
COI			s and pi	U											
CO2	Ana	lyse the	e input/	output	devices	s comm	nunicat	ing wit	h comp	uter sy	stem			(CL3
CO3	Dem	onstrat	te the fi	inctior	ns of dif	ferent	types o	f mem	ory dev	ices					CL3
							• 1		•						
CO4	App	ly diffe	erent da	ta type	es on sir	nple ar	ithmeti	ic and 1	ogical ı	ınit				(CL3
CO5	Ana	lvze the	e functi	ons of	basic p	rocessi	ng unit	. Parall	lel proc	essing	and pit	oelining	r	(CL3
		- <u>j</u>					6	·	1	8	ana pri	2	2		
						CO-PC	J-P50	MAPF	ING				Dre	ogr	amme
~ ~														0	cific
CO					Progra	mme	Outcor	nes (P	O)					-	ome
No.														(PS	0)
	1	2	3	4	5	6	7	8	9	10	11	12	1		2
<u>CO1</u>															
CO2															
CO3															
CO4															
<u>CO5</u>	C 1	4 a 4 1	(TT: 1		-			Mall			-	. D	(T -)	\square	
5:	Subs	iantial	(High)	2		erate (I	Mediu	n)			: Poor	(L0W))	
					AS	SESSI	MENT	STRA	TEGY						
Assessr	nent v	vill be	both C	[A and					be asse		sing D	irect an	d Indir	rect	



Sl. No.		Assessment Desc	cription	Weightage (%)	Max. Ma	rks	
1	Contin (CIA)	uous Internal As	sessment	100 %	50		
	Conti	nuous Internal Ev	aluation (CIE)	60 %	30		
	Assignments			40 %	20		
2	Semes	ter End Examina	tion (SEE)	100 %	50		
			ASSESSN	MENT DETAILS			
	Con	tinuous Internal	Assessment (Cl	(A) (50%)			
Conti	nuous In	ternal Evaluation	n (CIE) (60%)	Assignment/	Semester End Exam (50%)	m (SEE)	
	Ι	II	III	Activities (40%)			
	S	yllabus Coverage	e e e e e e e e e e e e e e e e e e e	Syllabus Coverage	e Syllabus Co	verage	
4	0%	30%	30%	100%	100%	0	
Ν	MI			MI	MI		
Ν	AII	MII		MII	MII		
		MIII		MIII	MIII		
			MIV	MIV	MIV		
			MV	MV	MV		
					shall contain the ques		
to the assesse	appropri ed throug		l. Any COs ma s.	upped with higher co	shall contain the ques ognitive Bloom's Leve		
to the assesse	appropri ed throug	ate Bloom's Leve th the assignment T TYPES WITH	l. Any COs ma s. WEIGHTAGE	upped with higher co S	-		
to the assesse ASSIC Sl. No.	appropri ed throug GNMEN	ate Bloom's Leve the assignment T TYPES WITH Assigni	l. Any COs ma s.	upped with higher co S	ognitive Bloom's Leve Max. Weightage (%)	l may also Max. Marks	
to the assesse ASSIC Sl. No. 1	appropri ed throug GNMEN Written	ate Bloom's Leve th the assignment T TYPES WITH	l. Any COs ma s. WEIGHTAGE	upped with higher co S	Max. Weightage (%) 25 %	l may also Max. Marks 05	
to the assesse ASSIC Sl. No. 1 2	appropri ed throug GNMEN GNMEN GNMEN GNMEN GNMEN	ate Bloom's Leve the assignment TTYPES WITH Assignments	l. Any COs ma s. WEIGHTAGE	upped with higher co S	Max. Weightage (%) 25 % 10 %	l may also Max. Marks 05 02	
to the assessed ASSIC Sl. No. 1 2 3	appropri ed throug GNMEN GNMEN Written Quiz Case S	ate Bloom's Leve the assignment TYPES WITH Assignments tudies	l. Any COs ma s. WEIGHTAGE	upped with higher co S	Max. Weightage (%) 25 % 10 % 25 %	l may also Max. Marks 05 02 05	
to the assesse ASSIC Sl. No. 1 2 3 4	appropri ed throug GNMEN Written Quiz Case S Semina	ate Bloom's Leve the assignment TTYPES WITH Assignments tudies ar/Presentation	l. Any COs ma s. WEIGHTAGE	upped with higher co S	Max. Weightage (%) 25 % 10 % 25 % 15 %	<i>l may also</i> Max. Marks 05 02 05 03	
to the assesse ASSIC Sl. No. 1 2 3 4 5	appropri ed throug GNMEN Written Quiz Case S Semina Peer - t	ate Bloom's Leve the assignments TYPES WITH Assignments tudies ar/Presentation to - Peer Learning	l. Any COs ma s. WEIGHTAGE	upped with higher co S	Max. Weightage (%) 25 % 10 % 25 % 10 % 10 % 10 %	<i>l may also</i> Max. Marks 05 02 05 03 02	
to the assesse ASSIC Sl. No. 1 2 3 4 5 6	appropri ed throug GNMEN Written Quiz Case S Semina Peer - t Activit	ate Bloom's Leve the assignment TTYPES WITH Assignments n Assignments tudies ar/Presentation to - Peer Learning y Based Learning	l. Any COs ma s. WEIGHTAGE	upped with higher co S	Max. Weightage (%) 25 % 10 % 15 % 10 % 50 % 50 %	l may also Max. Marks 05 02 05 03 02 10	
to the <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assesse</u> <u>assessesse</u> <u>assesses</u> <u>assesses</u> <u>assessesses</u> <u>assessesses</u> <u>assessesses</u> <u>assessesses</u> <u>assessesses</u> <u>assessesses</u> <u>assessesses</u> <u>assessesses</u> <u>assessesses</u> <u>assessesses</u> <u>assessesses</u> <u>assessesses</u> <u>assessesses</u> <u>assessesses</u> <u>assessesses</u> <u>assessesses</u> <u>assessesses</u> <u>assessesses</u> <u>assessesses</u> <u>assessesses</u> <u>assessesses</u> <u>assessesses</u> <u>assessesses</u> <u>assessessesses</u> <u>assessessesses</u> <u>assessesses</u> <u>assessesesses</u> <u>assessesses</u> <u>assessesses</u> <u>assessessesses</u> <u>assessese</u>	appropri ed throug GNMEN GNMEN Quiz Quiz Case S Semina Peer - 1 Activit Project	ate Bloom's Leve the assignments TYPES WITH Assignments tudies ar/Presentation to - Peer Learning y Based Learning Based Learning	l. Any COs ma s. WEIGHTAGE	upped with higher co S	Max. Weightage (%) 25 % 10 % 25 % 10 % 50 % 50 %	l may also Max. Marks 05 02 05 03 02 10 10	
to the assesse ASSIC Sl. No. 1 2 3 4 5 6 7 8	appropri ed throug GNMEN Written Quiz Case S Semina Peer - t Activit Project Field V	ate Bloom's Leve the assignment TTYPES WITH Assignments tudies ar/Presentation to - Peer Learning y Based Learning Based Learning Vork + Report	l. Any COs ma s. WEIGHTAGE	upped with higher co S	Max. Weightage (%) 25 % 10 % 10 % 50 % 50 % 50 %	l may also Max. Marks 05 02 05 03 02 10 10 10	
to the assesse ASSIC Sl. No. 1 2 3 4 5 6 7	appropri ed throug GNMEN GNMEN Vritten Quiz Case S Semina Peer - 1 Activit Project Field V Industr	ate Bloom's Leve the assignments TYPES WITH Assignments tudies ar/Presentation to - Peer Learning y Based Learning Vork + Report y Visit + Report	l. Any COs ma s. WEIGHTAGE nent Descriptio	apped with higher co S on	Max. Weightage (%) 25 % 10 % 25 % 10 % 50 % 50 %	l may also Max. Marks 05 02 05 03 02 10 10	
to the assesse ASSIC Sl. No. 1 2 3 4 5 6 7 8	appropri ed throug GNMEN GNMEN Vritten Quiz Case S Semina Peer - 1 Activit Project Field V Industr	ate Bloom's Leve the assignment TTYPES WITH Assignments a Assignments tudies ar/Presentation to - Peer Learning y Based Learning Based Learning Vork + Report y Visit + Report MOOC Courses	l. Any COs ma s. WEIGHTAGE nent Descriptio	upped with higher co S	Max. Weightage (%) 25 % 10 % 10 % 50 % 50 % 50 %	l may also Max. Marks 05 02 05 03 02 10 10 10	
to the assesse ASSIC Sl. No. 1 2 3 4 5 6 7 8 9	appropri ed throug GNMEN GNMEN GUIZ QUIZ Case S Semina Peer - 1 Activit Project Field V Industr NPTEI Submis	ate Bloom's Leve the assignment TTYPES WITH Assignments a Assignments tudies ar/Presentation to - Peer Learning y Based Learning Based Learning Vork + Report y Visit + Report MOOC Courses	l. Any COs ma s. WEIGHTAGE nent Descriptio	apped with higher co S on	Max. Weightage (%) 25 % 10 % 10 % 50 % 50 % 50 % 50 % 50 %	l may also Max. Marks 05 02 05 03 02 10 10 10 10	

different bands SEE OUESTION PAPER PATTERN.

SEE QUESTION PAPER PATTERN:

- 1. The question paper will have $\ensuremath{\text{TEN}}$ full questions from $\ensuremath{\text{FIVE}}$ Modules
- 2. There will be 2 full questions from each module. Every question will carry a maximum of 20 marks.
- 3. Each full question may have a maximum of four sub-questions covering all the topics under a module.
- 4. The students will have to answer FIVE full questions, selecting one full question from each module.

TEXT BOOKS:

- 1. Carl Hamacher, Zvonko Vranesic, Safwat Zaky, Computer Organization, 5th Edition, Tata McGraw Hill
- 2. M. Morris Mano, Computer System Architecture, PHI, 3rd Edition

REFERENCE BOOKS:

1. William Stallings: Computer Organization & Architecture, 9th Edition, Pearson

REFERENCE WEB LINKS AND VIDEO LECTURES (E - RESOURCES):

- 1. http://www.nptelvideos.in/2012/11/computer-organization.html
- 2. https://nptel.ac.in/courses/106/103/106103068/
- 3. https://nptel.ac.in/content/storage2/courses/106103068/pdf/coa.pdf
- 4. https://nptel.ac.in/courses/106/105/106105163/
- 5. https://nptel.ac.in/courses/106/106/106106092/
- 6. https://nptel.ac.in/courses/106/106/106106166/
- 7. http://www.nptelvideos.in/2012/11/computer-organization.html

DESIGN AND ANALYSIS OF ALGORITHMS (Effective from the Academic Year 2023 - 2024)

SEMESTER - IV

Course Code	CS422T4C	CIA Marks	50
Number of Contact Hours/Week(L:T:P:S)	3:0:0:2	SEE Marks	50
Total Hours of Pedagogy	40 L + 20 S	Exam Hours	03
	CDEDITC	3	

$\mathbf{CREDITS} - \mathbf{3}$

Prerequisites:

1. Fundamental knowledge of Mathematics, Data Structures.

Course Objectives:

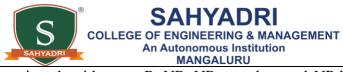
This course will enable students to:

- Describe the techniques for analyzing algorithms and how to evaluate their performance. Indicate the effectiveness of the method using asymptotic notations.
- Utilize algorithm design techniques including the brute force approach, greedy approach, divideand-conquer strategy, decrease-and-conquer strategy, transform-and-conquer strategy, dynamic programming, backtracking, and branch-and-bound to solve issues.
- Decide on the best data structure and algorithm design technique for the given application.
- Recognize the fundamental ideas behind NP-complete and NP-hard class issues.

Teaching - Learning Strategy:

These are some sample strategies, which course faculty members can incorporate in the Teaching Learning Process:

- Chalk and Talk Method/Blended Mode Method
- Power Point Presentation
- Expert Talk/Webinar/Seminar
- Video Streaming/Self-Study/Simulations
- Peer-to-Peer Activities
- Activity/Problem Based Learning
- Case Studies
- MOOC/NPTEL Courses


COURSE CONTENTS

MODULE - 1

Module Contents	Lecture Hours
Introduction to Algorithms- Properties, Specification, Fundamentals of	8 Hours
Algorithmic Problem solving, Analysis Framework.	
Performance Analysis: Estimating Space complexity and Time complexity of	
algorithms. Asymptotic Notations with examples, Basic efficiency classes,	
Mathematical analysis of Non-Recursive and Recursive Algorithms with Examples.	
Brute force design techniques: Selection sort, sequential search and String-	
matching algorithm with complexity Analysis.	

	MODULE - 2	
Divide conque comple sort, Qu Decrea Sorting	8 Hours	
~	MODULE - 3	
sequen Algorit Algorit	y Method: General method, Coin Change Problem, Knapsack Problem, Job cing with deadlines, Minimum cost spanning tree algorithms: Prim's hm, Kruskal's Algorithm. Single source shortest paths: Dijkstra's hm. Optimal Tree problems: Huffman Trees and Codes. Transform and er Approach: Heaps and Heap Sort.	8 Hours
	MODULE - 4	
Transi Algorit Person Space-	tive Closure: Warshall's Algorithm. All Pairs Shortest Paths: Floyd's hm, Knapsack problem, Optimal Binary Search Trees, Travelling Sales problem. Time Tradeoffs: Sorting by Counting, Input Enhancement in String ng Harspool's algorithm.	8 Hours
	MODULE - 5	
Hamilte Branch probler NP-Co	 cacking: General method, N-Queens problem, Sum of subsets problem, onian cycles Problems. and Bound: Basic concepts, Assignment Problem, Travelling Sales Person n, 0/1 Knapsack problem. mplete and NP-Hard problems: Basic concepts, non-deterministic nms, P, NP, NP-Complete, and NP-Hard classes. 	8 Hours
	COURSE OUTCOMES	
Upon c	ompletion of this course, the students will be able to:	
CO No.	Course Outcome Description	Bloom's Taxonomy Level
CO1	Solve the time complexity of recursive, non-recursive and brute force algorithms using asymptotic notations.	CL3
CO2	Solve the recurrence relation to obtain the performance of divide-and- conquer, decrease-and conquer approach.	CL3
CO3	Apply greedy technique, transform and conquer strategy to solve the problem for optimal solution.	CL3
CO4	Determine the time complexity for Dynamic-Programming paradigm and String-matching techniques.	CL3
CO5	Apply backtracking and branch-and-bound approach on combinatorial	CL3

						CO-P	O-PS	O MA	PPIN(Ĵ					
CO No.				P	rogran	nme O	outcon	nes (PO	0)				Programme Specific Outcome (PSO)		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	3	3	2	1		1						3			
CO2	3	3	2	1		1						3			
CO3	3	3	3	1		1						3			
CO4	3	3	3	1		1						3			
CO5	3	3	3	1		1						3			
3:	Subst	antial	(High)	•	2:2	Mode	rate (I	Mediu	m)			1: Po	or (Low)		
<u> </u>	aaaaan														
CO - A	Issessi	nent M	Iappin	g:											
<u>CO - A</u>	ISSESSI	nent M		-	us Inte	rnal A	ssessr	nent (CIA) (50%)					
			Con	tinuou	us Inte us Inte (CIE) (rnal E	Evalua		Assi	gnmen	Se	emeste	r End Exa (50%)	m (SEE)	
			Con	tinuou tinuou	us Inte	rnal E (60%)	Evalua		Assig t/Act	gnmen tivities	Se	emeste	r End Exa (50%)	m (SEE)	
			Con Con	tinuou tinuou	us Inte (CIE) (rnal E (60%) I	Evalua I	tion	Assig t/Act	gnmen	S	emeste		m (SEE)	
			Con Con	tinuou tinuou [Syl	us Inte (CIE) (I	rnal E (60%) I Covera	Evalua I age	tion	Assig t/Act (4	gnmen tivities	Se	emeste		m (SEE)	
Course			Con Con	tinuou tinuou [Syl	us Inte (CIE) (Il labus (rnal E (60%) I Covera	Evalua I age	tion II	Assig t/Act (4)	gnmen tivities 0%)	S	emeste	(50%)	m (SEE)	
Course	e Outco		Con Con 1 40	tinuou tinuou [Syl %	us Inte (CIE) (Il labus (rnal E (60%) I Covera	Evalua I age	tion II	Assig t/Act (4)	gnmen tivities 0%) 00%	Se	emeste	(50%) 100%	m (SEE)	
Course	e Outco		Con Con 1 40	tinuou tinuou [Syl %	us Inte (CIE) (Il labus (rnal E (60%) I Cover	Evalua I age	tion II	Assig t/Act (4)	gnmen tivities 0%) 00% x	Se	emeste	(50%) 100% x	m (SEE)	
Course	e Outco CO1 CO2		Con Con 1 40	tinuou tinuou [Syl %	us Inte (CIE) (Il labus (30)	rnal E (60%) I Cover:	Evalua I age 30	tion II	Assig t/Act (4)	gnmen tivities 0%) 00% x x x		emeste	(50%) 100% X X	m (SEE)	

Sl. No.	Assessment Description	Weightage (%)	Max. Marks
	Continuous Internal Assessment (CI)	100 %	50
1	Continuous Internal Evaluation (CIE)	60 %	30
	Assignments*	40 %	20
2	Semester End Examination (SEE)	100 %	50
Assign	nment Types:		

	SAHYADRI	MANGALURU	
SI.	Assignment Description	Max.	Max. Marks
No.	Assignment Description	Weightage (%)	
1	Written Assignments	25 %	5
2	Quiz	25 %	5
3	Field Visits/Survey/Case Studies	50 %	10
4	Model / Prototype Development	100 %	20
5	Project Based Learning	100 %	20
6	Seminar/Presentation	25 %	5
7	Peer - to -Peer Learning	25 %	5

An Autonomous Institution

SEE Question Paper Pattern:

- 1. The question paper will have **TEN** full questions.
- 2. Each full question consisting of 20 marks.
- 3. There will be 2 full questions from all the FIVE modules.
- 4. Each full question will have a maximum of four sub-questions covering all the topics under a module.
- 5. The students will have to answer 5 full questions, selecting one full question from each module.

Reference Books:

- 1. Introduction to the Design and Analysis of Algorithms, Anany Levitin: 3rd Edition, Pearson.
- 2. Computer Algorithms/C++, Ellis Horowitz, Satraj Sahni and Rajasekaran, 2nd Edition, Universities Press.
- 3. Introduction to Algorithms, Thomas H. Cormen, Charles E. Leiserson, Ronal L. Rivest, Clifford Stein, 3rd Edition, PHI.
- 4. Design and Analysis of Algorithms, S. Sridhar, Oxford (Higher Education).

Reference Web Links and Video Lectures (e - Resources):

- https://www.youtube.com/watch?v=gY0MwGLq9W8&list=PLyqSpQzTE6M9DKhN7z2fOpKTJWu -639_P
- https://www.youtube.com/watch?v=5Y8Lfsreeck&list=PL7DC83C6B3312DF1E
- https://www.youtube.com/watch?v=S47aSEqm_0I&list=PLgj_V-
 - ZKxRKrxgFyOutPJpoLFBaQMOpK-

DESIGN AND ANALYSIS OF ALGORITHMS LAB (Effective from the Academic Year 2023 -2024)

SEMESTER - IVCourse CodeCS422L5CCIA Marks50Number of Contact Hours/Week (L:T:P:S)0:0:2:1SEE Marks50Total Hours of Pedagogy24 P+ 12 SExam Hours3

CREDITS –1

Prerequisites:

- 1. Knowledge of Mathematics, Data Structures and java Programming
- 2. Usage of IDEs Eclipse, Netbeans and VS studio

Course Objectives:

This course will enable students to:

- 1. Design, analyze, and implement various algorithms in Java
- 2. Make use of different algorithmic design techniques to solve problems.
- 3. Analyze and contrast the effectiveness of various algorithms.

Descriptions:

Installation procedure of the required software must be demonstrated, carried out in groups and documented in the journal.

Algorithm Implementation using Python Programming (Max. Marks: 50)

1. Design, develop, and implement the specified algorithms using java Programming under LINUX/Windows environment.

Exp. No.	Experiment Description
1	Design an application to create a list of TV channels (minimum 10) that includes the numbers of viewers and viewing time. Rate the channels based on the number of viewers (1 High - 6 low). Plot graphs to analyze the running times of different sorting algorithms.
2	Design and implement an application that considers the problem of scheduling n jobs of known durations t1, t2,, tn for execution by a single processor. The jobs can be executed in any order, one job at a time. Find and display the schedule that minimizes the total time spent by all the jobs in the system by maximizing the profit.
3	Develop an optimal route for a scenario where a person wants to buy a ticket to a baseball game. Along the way from the house to reaching the destination, some known person who lives on that street might give money. Visit towns for the collection of more money to buy a ticket.
4	Design an application for a thermal power station and electrical lines that are connected among various power stations. The costs of electrification involved appear as weights on the edges.

MANGALURU Obtain the minimum possible connection among the thermal stations so that any two thermal stations can be linked with the minimum cost involved. Develop a program for the following: 5 To construct a Huffman code for a given English text and encode it. 1. To decode an English text which has been encoded with a Huffman code? 2. The owner of a gourmet coffee shop wishes to mix a 10-pound bag of coffee using various types of coffee beans in such a way to produce the coffee blend at the maximum cost. The 6 weights of the objects in the problem correspond to the quantity in pounds available of each type of coffee bean. The value of each quantity of coffee beans is the total cost of that quantity in rupees. Apply the Knapsack algorithm to maximize the profit. Design an application for drilling an optimal printed circuit board. To drill two holes of different diameters consecutively, the head of the machine has to move to a toolbox and change the drilling equipment. This is quite time consuming. Thus, it is clear that one has to choose 7 some diameter, drill all holes of the same diameter, change the drill, drill the holes of the next diameter, etc. Thus, this drilling problem has to minimize the travel time for the machine head. Find the optimal time to drill the circuit board. Design and implement Java Program to find all Hamiltonian Cycles in a connected undirected 8 Graph G of n vertices using backtracking principle. Design and implement for a given chess board having N×N cells, place N queens on the board in such a way that no queen attacks any other queen. If it is possible to place all the N queens in 9 such a way that no queen attacks another queen, then print N lines having N Queens. If there is more than one solution of placing the queens, print all of them. If it is not possible to place all N queens in the desired way, then print "Not possible". **COURSE OUTCOMES** Upon completion of this course, the students will be able to: Bloom's CO **Course Outcome Description** Taxonomy No. Level Implement Python data structures – lists, tuples & amp; dictionaries to represent CO1 CL3 compound data. Design, analyze and implement the brute force, divide and conquer algorithms CO₂ CL4 and compare their time complexity. Design and implement the greedy technique algorithms to solve the problem for CO3 CL3 optimal solution. Apply dynamic programming techniques to solve Traveling Salesperson CO4 CL3 Problem and Knapsack problem. **CO-PO-PSO MAPPING** CO Programme **Programme Outcomes (PO)** No. Specific

& MANAGEMENT

An Autonomous Institution

									URU			1		
														tcome
														SO)
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	3	1	3			2	2	1	2	2		
CO2	3	3	3	1	3			2	2	1	2	2		
CO3	3	3	3	1	3			2	2	1	2	2		
CO4	3	3	3	1	3			2	2	1	2	2		
3:	Subst	antial	(High)	•	2:	Moder	ate (N	Aediu	n)		1:	Poor (l	Low)	•
					and SI					· ,·				
Stu La Ma Ch zer	idents b test arks D ange o to.	are all should istribut of expe	owed to be con ion: Pr riment	o pick ducted ocedur is allo	one exp for 25 re + Co wed on	e includ periment Marks. nduction ly once	t from n + Vi	the lot va = 0: arks al	5 + 15 - lotted t	+05 = 100	25 Mai	re part		
Stu La Ma Ch zer	idents b test arks D ange o o. As	are all should istribut of expe	owed to be con ion: Pr riment	o pick ducted ocedur is allo	one exp for 25 re + Co wed on	beriment Marks. nduction ly once	t from n + Vi and m	the lot va = 0: arks al	5 + 15 - lotted t ightag	+ 05 = 100	25 Mai	re part	x. Mar	
Stu La Ma Ch zeu Sl. No.	idents b test i arks D ange c ro. As Co	are all should istribut of expe sessme	owed to be con ion: Pr riment ent Des	o pick ducted cocedur is allo criptic	one exp for 25 re + Co wed on	periment Marks. nduction	t from n + Vi and m	the lot va = 0: arks al	5 + 15 lotted t ightag 100 %	+ 05 = 100 the p	25 Mai	re part	x. Mar 50	
Stu La Ma Ch zer	idents b test a arks D ange c co. As Co We	are all should istribut of expe sessme ontinuc	owed to be con ion: Pr riment	o pick ducted cocedur is allo criptic	one exp for 25 re + Co wed on	beriment Marks. nduction ly once	t from n + Vi and m	the lot va = 0: arks al	5 + 15 - lotted t ightag 100 %	+ 05 = 100 the p	25 Mai	re part	x. Mar 50 25	
Stu La Ma Ch zeu Sl. No.	idents b test : arks D ange c o. As Co We La	are all should istribut of expe sessme ontinuc eekly A b Test	owed to be con ion: Pr riment ent Des ous Inte assessm	o pick ducted focedur is allo ccriptic ernal <i>A</i> nent	one exp for 25 re + Co wed on on Assessm	beriment Marks. nduction ly once nent (C	t from n + Vi and m	the lot va = 0: arks al	5 + 15 - lotted t ightag 100 % 50 %	+ 05 = 1 to the p e (%)	25 Mai	re part	x. Mar 50 25 25	
Stu La Ma Ch zeu Sl. No.	idents b test parks D ange c ro. As Co Ua La Se	are all should istribut of expe sessme ontinuc eekly A b Test mester	owed to be con ion: Pr riment ent Des ous Into assessm End F	o pick ducted focedur is allo ccriptic ernal <i>A</i> nent	one exp for 25 re + Co wed on	beriment Marks. nduction ly once nent (C	t from n + Vi and m	the lot va = 0: arks al	5 + 15 - lotted t ightag 100 %	+ 05 = 1 to the p e (%)	25 Mai	re part	x. Mar 50 25	

3. https://nptel.ac.in/courses/106106182.

ADVANCED GRAPH THEORY

(Effective from the Academic Year 2023 -2024)

SEMESTER - IV

Course Code	MA422T6CA	CIA Marks	50
Number of Contact Hours/Week (L:T:P:S)	3:0:0:1	SEE Marks	50
Total Hours of Pedagogy	40 hrs	Exam Hours	03
	CREDITS – 3	3	·

COURSE PREREQUISITES:

• Basic knowledge of Graph Theory.

COURSE OBJECTIVES:

To learn fundamental concepts and to explore modern applications of Graph Theory for problemsolving and network analysis

TEACHING - LEARNING STRATEGY:

These are some sample strategies, which course faculty members can incorporate in the Teaching Learning Process:

- Chalk and Talk Method/Blended Mode Method
- Power Point Presentation
- Expert Talk/Webinar/Seminar
- Video Streaming/Self-Study/Simulations
- Peer-to-Peer Activities
- Activity/Problem Based Learning
- Case Studies
- MOOC/NPTEL Courses

COURSE CONTENTS

Module Contents	Lecture Hours
MODULE - 1	
Graphs and Subgraphs:	8 Hours
Definitions and Examples, Subgraphs, Operations on graphs, Connected and Disconnected	

	MANGALURU	
-	s, Complements, Graph Isomorphism, Vertex Degree, Euler Trails and Circuits,	
Hamil	tonian paths and circuits.	
	MODULE - II	
Matri	ces, Coloring and Directed Graph	8 Hours
Proper	Representation, Adjacency matrix, Incidence matrix, Circuit matrix, Path Matrix, ties - Related Theorems. Graph Coloring, Chromatic Polynomial, Chromatic oning, Matching, Covering - Related Theorems.	
	MODULE - III	
Trees:	Trees, Properties of trees, Distance and centres in tree, Rooted and binary trees.	8 Hours
Tree, I	ning trees of a graph and Spanning trees in a weighted graph. Traversal of Binary Pre-order and Post-order Traversal. Prefix codes, optimal tree. Fundamental Circuits at sets, Network Flows. Max- flow Min- cut Theorem (Statement only and problems).	
	MODULE - IV	
plana	ar, Dual Graphs: Planar Graphs. Kuratowski's graphs. Different representation of r graph. Detection of planar graphs. Euler's polyhedral formula (No proof). netrical Dual (no theorems) problems.	8 Hours
Indepe	nating sets: Dominating set. Minimal Dominating set. Domination number. Endent dominating set. Finding minimal dominating sets. Some applications of ation theory.	
	MODULE - V	
Graph	n Theoretic Algorithms and Graph theory in Electrical networks:	8 Hours
Algori switch switch	uter representation of a graph. Algorithm on spanning trees: Kruskal's and Prim's thm. Shortest path algorithms: Dijkstra's algorithm, Warshall's algorithm. Graphs in ing and coding Theory. Contact networks, analysis of contact networks, Sequential ing networks. Electrical network analysis, Kirchhoff's current and voltage networks, currents and node voltages, LRC networks.	
	COURSE OUTCOMES	
Upon o	completion of this course, the students will be able to:	
T		Bloom's
CO		
CO No.	Description	Taxonomy

					~			MANO	ALUKU					Leve	el	
CO1	Illust	rate th	e Prop	erties o	of Grap	hs and	l Subgi	aphs.						CL3	;	
CO2		-		-	betwee ng grap		proper	ties of a	a matr	ix repres	sentation	and the		CL3	3	
CO3				-			rties of	trees in	n Com	puter sc	ience.			CL3		
CO4		-		-	o constr eering o			pret pla	anar g	raphs an	d their du	als in		CL3	;	
CO5	Deve	lop ad	vanced	l graph	ı algori		-			l networ	ks.			CL3	3	
						CO-F	O-PSO	O MAI	PPINO	J						
CO No.					Prog	gramn	ne Out	comes	(PO)				e O	ogra Spec utco (PSC	ific me	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	3	1					1				1				
CO2	3	3						1				1				
CO3	3	3	1					1				1				
CO4	3	3			1			1				1				
CO5	3	3	1		1			1	1	1		1				
3:	Subst	antial	(High)	2:	Mode	rate (N	Mediur	n)		1: I	Poor (Lov	w)			
CO - A	Assessr	nent N	/Iappir	ng:												
			Cor	ntinuo	us Inte	ernal A	Assessm	nent (O	CIA) (50%)						
C			Со	ntinuo	ous Int (CIE)	ernal) (60%		ntion		signme Activiti	Semester End I (50%					
Course	e Outc	omes		I	I	Ι]	II		es			•)			
				Sy	llabus	Cove	rage		(4	10%)						
			40	%	30	%	30)%	1	00%		1009	%			
	CO1		2	X						X		Х				
	CO2		2	X	2	X			1	X		Х				
	CO3				2	X				Х		Х				

	\sim	MANOA	LONO	
CO4		X	Х	Х
CO5		Х	Х	Х

An Autonomous Institution

& MANAGEMENT

Assessment Strategy:

Assessment will be both CIA and SEE. Students learning will be assessed using Direct and Indirect methods:

SI. No.	Assessment Description	Weightage (%)	Max. Marks
	Continuous Internal Assessment (CIA)	100 %	50
1	Continuous Internal Evaluation (CIE)	60 %	30
	Assignments*	40 %	20
2	Semester End Examination (SEE)	100 %	50
Assign	ment Types:	I I_	

Sl. No.	Assignment Description	Max. Weightage (%)	Max. Marks
1	Written Assignments	25 %	5
2	Quiz	25 %	5
3	Case Studies	25 %	5
4	Seminar/Presentation	15 %	3
5	Peer - to -Peer Learning	10 %	2

SEE Question Paper Pattern:

- 7. The question paper will have **TEN** full questions.
- 8. Each full question consisting of 20 marks.
- 9. There will be 2 full questions from all the FIVE modules.
- 10.Each full question will have a maximum of three sub-questions covering all the topics under a module.
- 11. The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

- 12. Narsingh Deo, "Graph Theory with Application to Engineering and Computer Science", Printice Hall of India Private Limited, 2009.
- 13. Grimaldi R.P. "Discrete and Combinatorial Mathematics: An Applied Introduction", Pearson

Addison Wesley, 5th edition, 2006.

Reference Books:

- 14. Bondy, J. A. and Murty, U.S.R., "Graph Theory with Applications", North Holland Publication, 2008.
- 15. West, D. B., —Introduction to Graph Theoryl, Pearson Education, 2011.
- 16. John Clark, Derek Allan Holton, —A First Look at Graph Theoryl, World Scientific Publishing Company, 1991.

& MANAGEMENT

An Autonomous Institution MANGALURU

17. Rosen K.H., "Discrete Mathematics and Its Applications", Mc Graw Hill, 2007.

Reference Web Links and Video Lectures (e - Resources):

- 18. http://users.utu.fi/harju/graphtheory/graphtheory.pdf.
- 19. https://www.maths.ed.ac.uk/~v1ranick/papers/wilsongraph.pdf
- 20. https://www.academia.edu/35284015/Graph_Theory_With_Applications_To_Engineering_And_C omputer_Science_by_Narsingh_Deo
- 21. https://onlinecourses.nptel.ac.in/noc22_ma10/preview#:~:text=Graph%20theory%20is%20the%20 core,primary%20methods%20in%20Graph%20Theory.

REGRESSION STATISTICAL COMPUTING

(Effective from the Academic Year 2023 -2024)

SEMESTER - IV

Course Code	MA422T6C B	CIA Marks	50
Number of Contact Hours/Week (L:T:P:S)	3:0:0:1	SEE Marks	50
Total Hours of Pedagogy	40 L	Exam Hours	03

CREDITS – 3

COURSE PREREQUISITES: Basic knowledge of statistics and programming.

COURSE OBJECTIVES:

- 1. Understand the fundamentals of regression analysis and its application in statistical computing.
- 2. Develop proficiency in implementing regression models, assessing model fit, and interpreting results.
- 3. Apply regression techniques to real-world datasets, solving complex problems in data analysis and prediction.

TEACHING - LEARNING STRATEGY:

These are some sample strategies, which course faculty members can incorporate in the Teaching Learning Process:

- 4. Chalk and Talk Method/Blended Mode Method
- 5. Power Point Presentation
- 6. Expert Talk/Webinar/Seminar
- 7. Video Streaming/Self-Study/Simulations
- 8. Peer-to-Peer Activities
- 9. Activity/Problem Based Learning
- 10. Case Studies
- **11.** MOOC/NPTEL Courses

COURSE CONTENTS

MODULE - I

model.	uction to Regression Analysis: Basics of regression analysis. Simple linear regression Assumptions, Estimation of model parameters, least squares method, Difference n descriptive and inferential statistics. Regression, Dependent and independent es.	8 Hours
	MODULE - II	
propert regress	e Linear Regression: least squares method, Interpretation of Regression coefficient ies Correlation-Karl Pearson's coefficient of correlation regression analysis-lines of ion. Fitting of first and second-degree curve, exponential curve by the method of least a fter logarithmic transformation.	8 Hours
	MODULE - III	·
Estima	variate data analysis 1: Multiple linear regression (3 variables only), Assumption tion of Regression by least squares method. Estimation of regression coefficients multiple correlation coefficients. Coefficient of Determination (R^2)	0
	MODULE - IV	
Logisti	ariate Data Analysis 2 - (Description of various multivariate methods to be given c regression, Factor Analysis, Structural Equation Modelling, Cluster Analysis ninant Analysis, conjoint analysis, Correspondence Analysis	0 1100110
	MODULE – V	
	tical Computing: Packages, GGplot2 package, Likert package, correlation and ion analysis (bivariate and multivariate data), polynomial regression	8 Hours
	COURSE OUTCOMES	
Upon c	completion of this course, the students will be able to:	
CO No.	Course Outcome Description	Bloom's Taxonomy Level
CO1	Apply regression analysis to solve complex computer science problems.	CL3
CO2	Use statistical software tools proficiently for data analysis and modeling.	CL2
CO3	Interpret and communicate results effectively.	CL3
CO4	Apply regression techniques to enhance decision-making and prediction in computer science.	CL3
CO5	Demonstrate critical thinking and problem-solving skills in practical applications	CL3
	CO-PO-PSO MAPPING	1
СО	Programme Outcomes (PO)	Programme Specific Outcome

							1	MANGAL	UKU				T		
No.														(PSO)	_
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	3	1		1		1								
CO2	3	3	2		1						1	1			
CO3	3	2			1					1		1			
CO4	3	2			2		1					1			
CO5	3	3	2		1		1				1				
3:	Subs	tantial	(High))	2	: Mode	rate (I	Mediun	n)		1	: Poor	(Low))	
nethod				IA and	SEE. S		learni		be asses	sed u	sing Di		d Indir Mark		
No.	Car			nal As	_					_					
1	(CIA		s mer	TIAI AS	sessine	111		100	%			:	50		
	Co	ntinuoı	is Inter	nal Eva	aluatior	n (CIE)		60	%		30				
	Assignments							40	%		20				
		Assign											50		
2		-	End Ex	amina	tion (S	EE)		100	%				50		
2		-	End Ex	amina		EE) ASSESS	MEN'								
2	Sem	ester H			A			Γ DET.				End I		(SEE)	
	Sem	ester F	ous Int	ternal A	Assessi	SSESS	CIA) (5	Γ DET.	AILS		mester 0%)			(SEE)	
	Sem Co uous	ester F	ous Int	ternal A	A Assessi (CIE)	SSESS		Г DET. 50%) Assignr	AILS					(SEE)	
Contin	Sem Co uous	ester H ontinu Intern	ous Int al Eva II	ternal A	A Assessi (CIE) I	SSESS nent (C (60%)		T DET. 50%) Assigni ctivities	AILS nent/	- (50	0%)		Exam (
Contin	Sem Co uous	ester H ontinu Intern	ous Int al Eva II	ternal A luation	A Assessi (CIE) I	SSESS nent (C (60%)		T DET. 50%) Assigni ctivities	AILS nent/ (40%) coverage	- (50	0%)	End I /llabus	Exam (
Contin	Sem Co uous	ester H ontinu Intern	ous Int al Eva II bus Co	ternal A luation	A Assessi (CIE) I	ASSESS nent (C (60%) H		T DET. 50%) Assigni ctivities labus C	AILS nent/ (40%) coverage	- (50	0%)	End I Vllabus	Exam (Cover		
Contin 1 40	Sem Co uous	ester H ontinu Intern	ous Int al Eva II bus Co	ternal A luation	A Assessi (CIE) I	ASSESS nent (C (60%) H		T DET. 50%) Assigni ctivities labus C 1009	AILS nent/ (40%) Coverage	- (50	0%)	End I Ulabus	Exam (Cover		
Contin 1 40 M	Sem Co uous	ester H ontinu Intern	ous Int al Eval II bus Co 30%	ternal A	A Assessi (CIE) I	ASSESS nent (C (60%) H		T DET. 50%) Assigni ctivities labus C 1009 MI	AILS nent/ (40%) coverage %	- (50	0%)	End I viliabus 10	Exam (Cover 0% MI		
Contin 1 40 M	Sem Co uous	ester H ontinu Intern	ous Int al Eval II bus Co 30% MII	ternal A	A Assessi (CIE) I 30	ASSESS nent (C (60%) H		T DET. 50%) Assigni etivities labus C 1009 Mi MI	AILS nent/ (40%) Coverage	- (50	0%)	End I villabus 10 N N	Exam (Cover 00% MI MI		

to the appropriate Bloom's Level. Any COs mapped with higher cognitive Bloom's Level may also be assessed through the assignments.

ASSIGNMENT TYPES WITH WEIGHTAGES

Sl. No.	Assignment Description	Max. Weightage (%)	Max. Marks
1	Written Assignments	25 %	05
2	Quiz	10 %	02
3	Case Studies	25 %	05
4	Seminar/Presentation	15 %	03
5	Peer - to - Peer Learning	10 %	02
6	Activity Based Learning	50 %	10
7	Project Based Learning	50 %	10
8	Field Work + Report	50 %	10
9	Industry Visit + Report	50 %	10
10	NPTEL/MOOC Courses – Registration and Assignment Submissions	50 %	10
	NPTEL Certification	75 %	15
11	Any other Innovative Assignments (CL4 and above)	50 %	10

Note: The assignments mentioned above may be provided appropriately to the students belonging to different bands

SEE QUESTION PAPER PATTERN:

12. The question paper will have **TEN** full questions from **FIVE** Modules

13. There will be 2 full questions from each module. Every question will carry a maximum of 20 marks.

14. Each full question may have a maximum of four sub-questions covering all the topics under a module.

15. The students will have to answer FIVE full questions, selecting one full question from each module.

TEXT BOOKS:

1) Gupta, S. C., & Kapoor, V. K. (2002). Fundamental of Mathematical Statistics. Sultan Chand & sons.

REFERENCE BOOKS:

1) Joseph Hair, F., Willium Black, C., Barry Babin, J., & Rolph Anderson, E. (2010). Multivariate Data Analysis, Seventh edition. Pearson Prentice Hall.

2) Kothari, C. R. (2004). Research methodology. New Age International Publishers.

3) Levin, R. (2013). Statistics for Management. Prentice Hall India.

4) Medhi, J. (2006). Statistical Methods: An Introductory Text. New Age International(P) Limited, New delhi.

5) Montgomery, D. C. (2007). Introduction to Linear Regression analysis. John Willey & sons.

6) Mukhopadhyay, P. (2000). Mathematical Statistics. Books & Allied Pvt. Ltd.

7) Robert Kabacoff, I. (2015). R in Action - Data Analysis and Graphics with R, second edition. dreamtech Press.

8) Sudha Purohit, G., Sharad Gore, D., & Shailaja Deshmukh, R. (2008). Statistics Using R. Narosa Publishing House.

REFERENCE WEB LINKS AND VIDEO LECTURES (E - RESOURCES):

- 16. https://www.youtube.com/watch?v=8Kg21jBCm-k
- 17. https://www.youtube.com/watch?v=Wa6kaCwyYRk
- **18.** http://nptel.ac.in/courses.php?disciplineID=111
- **19.** http://www.class-central.com/subject/math(MOOCs)
- 20. http://academicearth.org/
- 21. http://www.bookstreet.in.
- 22. VTU e- Shikshana ProgramVTU e-Shikshana Program

OPTIMIZATION TECHNIQUES

(Effective from the Academic Year 2023 - 2024)

SEMESTER - IV

Subject code	MA422T6CC	CIA Marks	50
Number of Contact Hours/Week (L:T:P:S)	3:0:0:1	SEE Marks	50
Total Hours of Pedagogy	40 L	Exam Hours	03
	CREDITS – 3	·	

COURSE PREREQUISITES:

Basics of Statistics, Probability distributions. Multiple integration

COURSE OBJECTIVES:

- 23. Study the techniques of complex variables and functions together with their derivatives, Contour integration and transformations
- 24. Enable the students to apply basic concepts of graph theory on developing algorithms
- Understand the concept of probability and enable the students to predict the outcome of simple experiments 25.
- Enable the students to use various tests of significance in engineering problems 26.
- 27. Understand the concept of optimization techniques

TEACHING - LEARNING STRATEGY:

These are some sample strategies, which course faculty members can incorporate in the Teaching Learning Process:

- 28. Chalk and Talk Method/Blended Mode Method
- 29. Power Point Presentation
- 30. Expert Talk/Webinar/Seminar
- 31. Video Streaming/Self-Study/Simulations
- 32. Peer-to-Peer Activities
- 33. Activity/Problem Based Learning
- 34. Case Studies
- **35.** MOOC/NPTEL Courses

COURSE CONTENTS

MODULE - I

Joint Probability Distribution Functions: Discrete and Continuous Random variables, Probability mass function, Probability density functions. Cumulative distribution functions.

8 Hours

		ents: F	inding j	joint Pı	robabili	ty usin	g R-sof	itware							
Lab Co	ompon														
						N	/IODUI	E - II							
Stocha matrice Theore	es. Ma	rkov Pı	ocess.	Estima	tion of	Param						•		8 H	ours
						N	IODUL	E - III							
Linear LPP Si Lab Co	mplex	metho	d, Big I	M meth	nod, Du	ality in oftwar	n LPP.		acteristi	cs of I	JPP Ac	lvantag	ges of	8 Ho	ours
T					(D)				9		6 770	NT .1		1	
Transp corner	-			0					-					8 H	ours
						3	IODUL		0			0		<u>I</u>	
Game 7 number and wit	r of pla	ayers. I	Payoff 1	-		•	-		-					8 H	ours
						COU	RSE OU	TCOM	IES						
Upon co	ompleti	on of th	is course	e, the stu	idents w			JTCOM	IES						
Upon co CO No.	ompleti	on of th	is course	e, the stu		rill be at								Bloo Taxon Lev	omy
CO	Illust	rate ra		variable	Cou	rill be at rse Ou Joint pr	ole to:	Descrip	tion	functio	ns to a	analyse	the	Taxon	omy el
CO No.	Illust	rate ra ability r	ndom v nodels i	/ariable n engin	Cou s and 3 eering f	rill be at rse Ou Joint pr ïeld.	ole to: tcome	Descrip ty distri	tion		ns to a	analyse	the	Taxon Lev	omy el 3
CO No.	Illust proba	ability r	ndom v nodels i arkov n	variable n engin nodels t	Cou s and s eering f o predic	rill be at rse Ou Joint pr ïeld. ct proba	ole to: tcome robabilit	Descrip ty distri r a prob	tion bution lem stat	ement.			the	Taxon Lev CL	omy el 3 3
CO No. CO1 CO2	Illust prob Cons Solve	rate ra ability r struct M e Linear	ndom v nodels i farkov n r Progra	variable n engin nodels t mming	Cou s and a eering f o predic Probler	rill be at rse Ou Joint pr ïeld. et proba n to get	ole to: tcome robabilit bility fo	Descrip ty distri r a prob	tion ibution lem stat	ement. Matherr			the	Taxon Lev CL CL	omy el 3 3 3 3
CO No. CO1 CO2 CO3	Illust proba Cons Solva Abili	rate ra ability r struct M e Linear	ndom v nodels i arkov n r Progra lve bala	variable n engin nodels t .mming unced Tr	Cou s and a eering f o predic Probler ransport	rill be at rse Ou Joint pr Tield. The proba n to get tation an egic pla	tcome robabilit bility fo optimal nd Assig	Descrip ty distri r a prob l solutio gnment p sing Gan	tion bution lem stat ns of a l problem me theor	ement. Matherr s			the	Taxon Lev CL CL	omy el 3 3 3 3 3
CO No. CO1 CO2 CO3 CO4	Illust proba Cons Solva Abili	rate ra ability r struct M e Linear	ndom v nodels i arkov n r Progra lve bala	variable n engin nodels t .mming unced Tr	Cou s and a eering f o predic Probler ransport	rill be at rse Ou Joint pr Tield. The proba n to get tation an egic pla	tcome robabilit bility fo optimal	Descrip ty distri r a prob l solutio gnment p sing Gan	tion bution lem stat ns of a l problem me theor	ement. Matherr s			the	Taxon Lev CL CL CL	omy el 3 3 3 3 3
CO No. CO1 CO2 CO3 CO4	Illust proba Cons Solva Abili	rate ra ability r struct M e Linear	ndom v nodels i arkov n r Progra lve bala	variable n engin nodels t .mming unced Tr	Cou s and a eering f o predic Probler ransport est strate	rill be at rse Ou Joint pr ield. et proba n to get cation an egic pla CO-PO	tcome robabilit bility fo optimal nd Assig	Descrip ty distri r a prob l solutio gnment p sing Gan MAPPI	tion bution lem stat ns of a l problem me theor	ement. Matherr s				Taxon Lev CL CL CL CL CL CL Specifi	omy el 3 3 3 3 3 3 3 me c
CO No. CO1 CO2 CO3 CO4 CO5	Illust proba Cons Solva Abili Deve	ability r atruct M e Linear ty to so	ndom v nodels i arkov n r Progra lve bala techniq	variable n engin nodels t mming unced Tr	Cou s and c eering f o predic Probler ransport est strate Progr	rill be at rse Ou Joint pr Tield. In to get tation an egic pla CO-PO	tcome robabilit bility fo optimal nd Assig nning us D-PSO	Descrip ty distri r a prob l solutio gnment p sing Gan MAPPI nes (PO)	tion bution lem stat ns of a l problem me theor NG	ement. Matherr s ry.	natical r	nodel.	Pr	Taxon Lev CL CL CL CL CL CL Specificone (1	omy el 3 3 3 3 3 3 me c PSO)
CO No. CO1 CO2 CO3 CO4 CO5 CO5	Illust proba Cons Solve Abili Deve	rate ra ability r struct M e Linear ity to so elop the	ndom v nodels i arkov n r Progra lve bala	variable n engin nodels t mming unced Tr ue of be	Cou s and c eering f o predic Probler ransport est strate Progr 5	rill be at rse Ou Joint pr ield. et proba n to get cation an egic pla CO-PO	tcome robabilit bility fo optimal nd Assig nning us	Descrip ty distri r a prob l solutio gnment p sing Gan MAPPI	tion bution lem stat ns of a l problem me theor	ement. Mathem s ry.		nodel.		Taxon Lev CL CL CL CL CL CL Specifi	omy el 3 3 3 3 3 3 3 me c
CO No. CO1 CO2 CO3 CO4 CO5	Illust proba Cons Solva Abili Deve	ability r atruct M e Linear ty to so	ndom v nodels i arkov n r Progra lve bala techniq	variable n engin nodels t mming unced Tr	Cou s and c eering f o predic Probler ransport est strate Progr	rill be at rse Ou Joint pr Tield. In to get tation an egic pla CO-PO	tcome robabilit bility fo optimal nd Assig nning us D-PSO	Descrip ty distri r a prob l solutio gnment p sing Gan MAPPI nes (PO)	tion bution lem stat ns of a l problem me theor NG	ement. Matherr s ry.	natical r	nodel.	Pr	Taxon Lev CL CL CL CL CL CL Specificone (1	omy el 3 3 3 3 3 3 me c PSO)

				SAHY	ADRI			MANGAL	URU				
CO3	3	3	1	1				1					
CO4	3	3	1	1	1				1	1			
CO5	3	3		1				1	1				
3	3: Subs	stantial	(High)			2: Mod	lerate (N	(Jedium)		1: Poor (L	ow)		
					A	SSESS	SMENT	STRAT	EGY				
Assessm	nent wi	ll be bot	h CIA a	nd SEE	. Studer	nts learni	ing will l	be assess	ed using	Direct and Indirect metho	ods:		
Sl. No.		Assessment Description					Weightage (%)		Max. Marks				
1	Cont	Continuous Internal Assessment (CIA)					100 %		50	50			
	Continuous Internal Evaluation (CIE)					60 0	%	30	30				
	1	Assignm	ents					40 9	%	20	20		
2	Semester End Examination (SEE)					100	%	50	50				
	1					ASSES	SMEN	T DETA	ILS				
		Contir	uous Ir	iternal	Assessr	nent (C	IA) (50%	%)		Semester End Exam	(SEE) (50%)		
Con	tinuou	s Intern	al Fval	uation		60%)		Assignn	nent/				
				uation			A	- Activities (40%)					
]	I		II]	III							
		Sylla	bus Co	verage			Sy	llabus C	overage	Syllabus Co	overage		
40)%		30%		3	0%		100%	6	100%			
MI								MI		MI			
MII		MII						MI	[MII			
		MIII						MIII MIV		MIII			
					Ν	MIV				MIV	MIV		
MV				MV	7	MV	MV						
ippropr issignm	iate Bl ents.	loom's I	level. A	Iny CO	s mappe	ed with	-			ll contain the questions is Level may also be asse			
	NMEN	NT TYP									1		
Sl. No.				0	ment D	escripti	ion			Max. Weightage (%)	Max. Mark		
1	Written Assignments							25 %	05				
	Quiz									10 %	02		
2		Case Studies							25 % 05				
2 3	Case	Studies								23 70	00		

MANGALURU					
5	Peer - to - Peer Learning	10 %	02		
6	Activity Based Learning	50 %	10		
7	Project Based Learning	50 %	10		
8	Field Work + Report	50 %	10		
9	Industry Visit + Report	50 %	10		
10	NPTEL/MOOC Courses – Registration and Assignment Submissions	50 %	10		
	NPTEL Certification	75 %	15		
11	Any other Innovative Assignments (CL4 and above)	50 %	10		

An Autonomous Institution

Note: The assignments mentioned above may be provided appropriately to the students belonging to different bands

SEE QUESTION PAPER PATTERN:

36. The question paper will have **TEN** full questions from **FIVE** Modules

37. There will be 2 full questions from each module. Every question will carry a maximum of 20 marks.

38. Each full question may have a maximum of four sub-questions covering all the topics under a module.

39. The students will have to answer FIVE full questions, selecting one full question from each module.

TEXT BOOKS:

1. V.K Kapoor and S.C Gupta "Mathematical Statistics" 11th edition, S. Chand Publications

2 .B.S. Grewal: Higher Engineering Mathematics, Khanna Publishers, 43rd Ed., 2015.

REFERENCE BOOKS:

- 40. C Ray Wylie, Louis C Barrett: "Advanced Engineering Mathematics", 6th Edition,
- 41. B.V Ramana: "Higher Engineering Mathematics" 11th Edition, Tata McGraw-Hill,
 - 3. Dr. K. Chandrashekar: "Complex analysis, Probability and Statistical Methods" Sudha Publications, 2021

REFERENCE WEB LINKS AND VIDEO LECTURES (E - RESOURCES):

- 42. https://www.youtube.com/watch?v=8Kg21jBCm-k
- 43. https://www.youtube.com/watch?v=Wa6kaCwyYRk
- **44.** http://nptel.ac.in/courses.php?disciplineID=111
- **45.** http://www.class-central.com/subject/math(MOOCs)

- 46. http://academicearth.org/
- **47.** http://www.bookstreet.in.
- **48.** VTU E Shikshana Program

METRIC SPACES

(Effective from the Academic Year 2023 -2024)

SEMESTER - IV

Course Code	MA422T6CD	CIA Marks	50			
Number of Contact Hours/Week (L:T:P:S)		SEE Marks	50			
Total Hours of Pedagogy	50 L	Exam Hours	03			
CREDITS – 3						

COURSE PREREQUISITES:

Basic knowledge of Set theory and Group theory

COURSE OBJECTIVES:

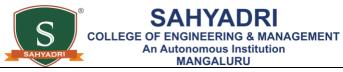
Introduce computer engineering students to metric theory, emphasizing its application in analyzing and optimizing data structures, algorithms, and network performance.

TEACHING - LEARNING STRATEGY:

These are some sample strategies, which course faculty members can incorporate in the Teaching Learning Process:

- Chalk and Talk Method/Blended Mode Method
- Power Point Presentation
- Expert Talk/Webinar/Seminar
- Video Streaming/Self-Study/Simulations
- Peer-to-Peer Activities
- Activity/Problem Based Learning
- Case Studies
- **49.** MOOC/NPTEL Courses

COURSE CONTENTS


MODULE - I

Introduction to Metric Spaces: Definition of metric space. Examples of metric spaces. Metrics	8 Hours					
and Distance Functions: Properties of metrics. Common distance functions. Open and Closed Sets,						
Definitions and properties.						
морше и						

MODULE - II

Topology of a Metric Space: Topological concepts, Convergence and Limit Points, Convergence8Hoursof sequences and series. Limit points, limit set.8

Continuity in Metric Spaces: Continuous functions in metric spaces. Properties of continuous

functions

functions.															
						Μ	IODUL	E - III							
Compa sets, Con sets and Spaces,	mpone Comp	ents of r actness	netric sj , Other	paces, C Charact	onnecte	edness o	f produ	ct of co		metric	spaces.	Bounde	ed	8 H	ours
						Μ	IODUL	E - IV						1	
Cauchy analysis	-	uences	and C	omplet	eness:	Cauchy	sequen	ices and	comple	teness.	Applica	ations in	l	8 H	ours
Compactness and Bolzano-Weierstrass Theorem :Bolzano-Weierstrass theorem.Compactness and its applications.															
						Ν	IODUI	LE - 5							
Applications in Computer Networks: Routing algorithms using metrics. Latency and distance metrics in network design. Metric Spaces in Geometry and Graphics: Geometric interpretations of metric spaces. Graphics algorithms and spatial metrics.							8 H	ours							
						COU	RSE OU	JTCON	IES						
Upon co	mpleti	on of th	is course	e, the stu	idents w	ill be ab	ole to:								
CO No.	Course Outcome Description							Bloom's Taxonomy Level							
CO1			letric sp s and al		-		puter s	cience	enginee	ring, ei	nhancin	g probl	em-	CL	2
CO2		· –	ogical c s in con	_		ntinuou	s functi	ons in r	netric sj	paces to	o enhano	ce probl	em-	CL3	
CO3			e compa npressio		and app	ly conc	epts of	Metric	space to	o optim	ize netv	work de	sign	CL	3
CO4	· ·	•	ichy se al analys	•		•	ss, and	l comp	oactness	to so	olve p	roblems	in	CL	.3
CO5		•	uting al etwork	•				gh metr	ics in c	compute	er netw	ork des	ign,	CL	3
						CO-PO	D-PSO	MAPP	ING						
CO No.					Progr	amme	Outcom	nes (PO)				5	rogramme Specific tcome (PSO)	
110.	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2		1							1		1			

2

3

Quiz

Case Studies

							SAH OF ENGINE An Autonon		& MANA	GEMENT			
CO2	2	2	1	SAHY	ADRI			GALURU		2	1		
			1							2			
CO3	2	2									1		
CO4	2	2					1				1		
CO5	3	2	2	1	2		1				1		
3	: Sub	stantial	(High)			2: Mode	rate (Medi	um)		I	1: Poor (I	LOW)	
Assessm	ent wi	ll be bot	h CIA a	nd SEE			IENT STI g will be as			irect and Ind	lirect meth	ods:	
Sl. No.		As	sessme	nt Desc	ription		Weig	ghtage (%)		Max. M	larks	
1	Cont	tinuous	Interna	l Asses	sment (C	CIA)		100 %		50			
	Continuous Internal Evaluation (CIE)					60 %		30					
	1	Assignm	ents					40 %		20			
2	Sem	ester En	d Exan	ninatior	(SEE)		-	100 %		50			
					I	ASSESS	MENT DI	ETAILS	5				
		Contin	nuous Ir	nternal	Assessm	ent (CIA	A) (50%)			Semester	End Exan	n (SEE) (50%	
Con	tinuou	s Interr	nal Eval	uation	(CIE) (6	0%)		gnmen					
]	[II		Π	I	- Activi	ties (40	%)				
		Sylla	bus Co	verage			Syllabı	is Cove	rage	5	Syllabus C	overage	
40	%		30%		30	%	1	100%			1009	/0	
N	II							MI			MI		
М	II		MII					MII			MI	[
			MIII					MIII			MII	I	
					M	IV		MIV			МГ	/	
					М	V		MV			MV	7	
			one (ho	th CIE	and S		-				-	s mapped to	
appropri assignm	iate Bl ents.	loom's l	Level. A	Iny CO			igner cogni				iso de asse	essed through	
appropri assignm ASSIGI	iate Bl ents.	loom's l	Level. A PES WI	Iny CO TH WI		AGES				Max. Weigl			
	iate Bl ents. NMEN	loom's l	Level. A PES WI	Iny CO TH WI Assign	EIGHT	AGES					ntage (%)		

10 %

25 %

02

05

4	Seminar/Presentation	15 %	03
5	Peer - to - Peer Learning	10 %	02
6	Activity Based Learning	50 %	10
7	Project Based Learning	50 %	10
8	Field Work + Report	50 %	10
9	Industry Visit + Report	50 %	10
10	NPTEL/MOOC Courses – Registration and Assignment Submissions	50 %	10
	NPTEL Certification	75 %	15
11	Any other Innovative Assignments (CL4 and above)	50 %	10

MANAGEMENT

Autonomous Institution MANGALURU

Note: The assignments mentioned above may be provided appropriately to the students belonging to different bands

SEE QUESTION PAPER PATTERN:

50. The question paper will have **TEN** full questions from **FIVE** Modules

51. There will be 2 full questions from each module. Every question will carry a maximum of 20 marks.

52. Each full question may have a maximum of four sub-questions covering all the topics under a module.

53. The students will have to answer FIVE full questions, selecting one full question from each module.

TEXT BOOKS:

54. Elements of Real Analysis, Shanti Narayan, Dr.M.D. Raisinghania, (2016)

55. Topology of Metric Spaces by S. Kumareshan, Alpha Science International Limited(2005)

REFERENCE BOOKS:

- 56. Metric Spaces by Satish Shirali and Harikrishan L Vasudeva Springer, (2006)
- 57. Metric Spaces by P.K. Jain and Khalil Ahmad ,Alpha Science International, (2004)
- 58. Elements of Metric spaces by M.N. Mukherjee, Academic Publishers (2005)

REFERENCE WEB LINKS AND VIDEO LECTURES (E - RESOURCES):

Competitive Programming using GO (Effective from the Academic Year 2022 - 2023) IV SEMESTER

Course Code	CS42297CD	CIA Marks	50
Number of Contact Hours/Week (L: T: P: S)	0:0:2:0	SEE Marks	50
Total Hours of Pedagogy	20P	Exam Hours	03
	CREDITS – 1		

COURSE PREREQUISITES:

• Basic Knowledge of C.

COURSE OBJECTIVES:

•

TEACHING - LEARNING STRATEGY:

Following are some sample strategies that can be incorporate for the Course Delivery

- 59. Chalk and Talk Method/Blended Mode Method
- 60. Power Point Presentation
- 61. Expert Talk/Webinar/Seminar
- 62. Video Streaming/Self-Study/Simulations
- 63. Peer-to-Peer Activities
- 64. Activity/Problem Based Learning
- 65. Case Studies
- 66. MOOC/NPTEL Courses
- **67.** Any other innovative initiatives with respect to the Course contents

LIST OF EXPERIMENTS

Sl. No.	Description
1	Write a go program to find Even Fibonacci numbers
2	Write a go program to find Largest prime factor
3	Write a go program to find Largest palindrome product
4	Write a go program to find Special Pythagorean triplet
5	Write a go program to illustrate Maps

	SAHYADRI COLLEGE OF ENGINEERING & MANAGEMENT An Autonomous Institution MANGALURU
6	Write a go program to Illustrate Interfaces
7	Write a go program to build a Simple Webserver
8	Write a go program to illustrate Dining Philosophers Problem
9	Write a go program to illustrate Checkpoint Synchronization
10	Write a go program to illustrate HTTP requests

SAHYADRI COLLEGE OF ENGINEERING & MANAGEMENT An Autonomous Institution MANGALURU

COURSE OUTCOMES

CO No.					Cou	rse Out	come	Descrip	tion				,	Bloom's Taxonomy Level	
CO1	Dem	onstrate	the usag	ge of flo	ow contr	ol and lo	oping.							CL3	
CO2	Appl	y the ab	oility to v	vrite op	timized	code usir	ng basic	e data ty	pes and t	function	S.			CL3	
CO3	Appl	y the us	age of m	nethods	and inte	erfaces.								CL3	
CO4	Appl	Apply Go routines and channels for directory traversals										CL3			
CO5	Usag	e of all	the pack	ages an	d Go too	ols requir	ed to w	rite opti	mized co	ode.				CL3	
						CO-PO	-PSO	MAPPI	NG				I		
CO No.	Programme Outcomes (PO)											S	Programme Specific atcome (PSO)		
110.	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	3	3			3			2	2	1	3	3	2	3	
CO2	3	3			3			2	2	1	3	3	2	3	
CO3	3	3			3			2	2	1	3	3	2	3	
CO4	3	3			3			2	2	1	3	3	2	3	
CO5	3	3			3			2	2	1	3	3	2	3	
3	Subs	stantial	(High)			2: Mode						1: Poor	(Low)		
Assessm	ent wi	ll be bot	th CIA a	nd SEE		SSESSN its learnin			_	g Direct	and Inc	lirect me	ethods:		
Sl. No.		As	sessmer	nt Desc	ription		1	Veighta	ige (%)			Max.	Marks		
1	Cont	tinuous	Interna	l Assess	sment (CIA)		100	%				50		
	Labo	ratory V	Work (A))				50	%				25		
		ratory T						30					15		
	1		Experin		5	ects (C)		20					10		
2	Seme	ester Er	nd Exam	nination	(SEE)			100	%				50		
			Courses		(B) and	l (C) are	not the	compor	nents of	the asse	essment	pattern,	, then (A	() will have	

Assessment Mode: Weekly Assessment of Laboratory Work (50 Marks) - the marks will be awarded based on the Continuous Internal Assessment (Weekly Assessment, each of 25 marks) of the students in each laboratory session. The average of all the marks obtained across the sessions will be the Final CIA marks.

An Autonomous Institution MANGALURU

& MANAGEMENT

69. In Laboratory Courses where (C) is not a component of the assessment pattern, then (A) will have 50% weightage (25 Marks), and (B) will have 50% weightage (25 Marks).

Assessment Mode: The marks will be awarded based on the Continuous Internal Assessment (Weekly Assessment) (A) and One Laboratory Test (B).

- 70. In Weekly Assessment, the student will be evaluated in each laboratory session for 25 marks. The average marks obtained across all the experiments will be the marks obtained for (A).
- 71.A Laboratory Test, similar to the SEE exam is conducted towards the end of the Semester/Course, whichever is earlier. The obtained marks are scaled down to 25 Marks (B)

The Sum of marks obtained across (A) and (B) will be the Final CIA marks.

- 72. In Laboratory Courses where (C) is a component of the assessment pattern, then assessment will be done by considering the weightages given above, i.e. (A) 25 Marks (Weekly Assessment), (B) 15 Marks (Laboratory Examination), (C) 10 marks (Open Ended Experiments/Mini Projects)
 - 73. The respective course instructor will design the assessment criteria for the said assessment components.
 - 74. The assessment components will be made known to the students by the respective Course Coordinators prior to the commencement of the Laboratory Work.

In all the cases, the assessments will be done based on the criteria designed by the Course Coordinator.

SEE QUESTION PAPER PATTERN:

- 5. All laboratory experiments should be included for practical examination, from which students are allowed to pick one experiment from the lot.
- 6. SEE shall be conducted for 100 Marks and the marks will be scaled down to 50.
- 7. General Marks Distribution: Procedure + Conduction + Viva = 20% + 50% + 30%.
- 8. Change of experiment is allowed only once and 20% of the marks allotted to the Procedure will be made ZERO (if a question carries two experiments, both should be changed). The evaluation will be done for 80% of the total maximum marks.

REFERENCE WEB LINKS AND VIDEO LECTURES (E – RESOURCES):

79. https://www.AUTOSAR.org/standards/

80. https://www.comasso.org/

81.AUTOSAR Architecture (Learn from Scratch with Demo) - https://www.udemy.com/course/AUTOSAR-architecture/

Data Analytics with Excel

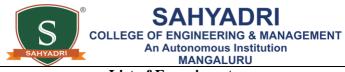
(Effective from the Academic Year 2023 - 2024)

VI SEMESTER

Course Code	21CS4XX	CIA Marks	50					
Number of Contact Hours/Week (L: T: P: S)	0:0:2:0	SEE Marks	50					
Total Hours of Pedagogy	24	Exam Hours	03					
CREDITS – 1								

COURSE PREREQUISITES:

• Basic Knowledge of Computer Programming.


COURSE OBJECTIVES:

- Apply Macros and Auto filter to solve the given real world scenario
- Learn how to use Pivot Tables and Pivot Charts to streamline your workflow in Excel
- Understand and Identify the principles of data analysis
- Become adept at using Excel functions and techniques for analysis
- Build presentation ready dashboards in Excel

TEACHING - LEARNING STRATEGY:

Following are some sample strategies that can be incorporate for the Course Delivery

- 82. Chalk and Talk Method/Blended Mode Method
- 83. Practical Based Learning
- 84. Power Point Presentation
- 85. Expert Talk/Webinar/Seminar
- 86. Video Streaming/Self-Study/Simulations
- 87. Peer-to-Peer Activities
- 88. Activity/Problem Based Learning
- 89. Case Studies
- 90. MOOC/NPTEL Courses
- 91. Any other innovative initiatives with respect to the Course contents

List of Experiments

Sl. No.								
1	Getting Started with Excel: Creation of spread sheets, Insertion of rows and columns, Dra of Aggregate functions.	ag & Fill, use						
	Working with Data							
2	92. Importing data, Data Entry & Manipulation, Sorting & Filtering93. Data Validation, Pivot Tables & Pivot Charts.							
3	Data Analysis Process: Conditional Formatting, What-If Analysis, Data Tables, Charts &	Graphs.						
	Cleaning Data							
4	 With Text Functions: use of UPPER and LOWER, TRIM function, Concatenate. Containing Date and Time Values: use of DATEVALUE function, DATEADD and DATEDIF, TIMEVALUE functions. 							
5	Conditional Formatting: formatting, parsing, and highlighting data in spreadsheets during data analysis.							
	Working with Multiple Sheets: work with multiple sheets within a workbook is crucial for organizing							
6	and managing data, perform complex calculations and create comprehensive reports.							
7	Create worksheet with following fields: Empno, Ename, Basic Pay(BP), Travelling Allowance(TA), Dearness Allowance(DA), House Rent Allowance(HRA), Income Tax(IT), Provident Fund(PF), Net Pay(NP). Use appropriate formulas to calculate the above scenario. Analyse the data using appropriate chart and report the data.							
8	Create worksheet on Inventory Management: Sheet should contain Product code, Product type, MRP, Cost after % of discount, Date of purchase. Use appropriate formula the above scenario. Analyse the data using appropriate chart and report the data.							
9	Create worksheet on Sales analysis of Merchandise Store: data consisting of Order ID, of Gender, age, date of order, month, online platform, Category of product, size, quan shipping city and other details. Use of formula to segregate different categories an comparative study using pivot tables and different sort of charts.	tity, amount,						
10	Generation of report & presentation using Autofilter & macro.							
	COURSE OUTCOMES							
Upon comp	letion of this course, the students will be able to:							
CO No.	Course Outcome Description	Bloom's Taxonomy						

SAHYADRI COLLEGE OF ENGINEERING & MANAGEMENT An Autonomous Institution MANGALURU

					~			MANGAL						Level
CO1	Use a	advance	d function	ons and	product	ivity too	ls to ass	ist in de	veloping	g worksł	neets.			CL3
CO2	Mani	ipulate c	lata lists	using (Dutline a	nd Pivot	Tables.							CL3
CO3	Use (Consolie	lation to	o summa	arise and	report r	esults fi	com mul	tiple wo	rksheets				CL3
CO4	Appl	y Macro	os and A	utofilte	r to solv	e the giv	en real	world sc	enario					CL3
CO5	Use A	Autofilte	er to eva	luate th	e real w	orld scer	nario							CL3
						CO-PO)-PSO	MAPP	ING					
CO No.		Programme Outcomes (PO)						S	Programme Specific utcome (PSO)					
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2	3		3							1		
CO2	3	2	3		3							1		
CO3	3	2	3		3							1		
CO4	3	2	3		3							1		
CO5	3	2	3		3							1		
3	B: Subs	stantial	(High)			2: Mod	erate (N	Medium)			1: Poor	(Low)	·
Assessm	nent wi	ll be bot	h CIA a	and SEE	A E. Studen	SSESS ts learni				g Direct	and Inc	lirect m	ethods:	
Sl. No.		As	sessme	nt Desc	ription			Weighta	ige (%)			Max.	Marks	
1	Cont	tinuous	Interna	al Asses	sment (CIA)		100	%				50	
	Labo	ratory V	Vork (A)				50	%				25	
	Labo	ratory T	Cest (B)					30	%				15	
			1		⁄lini Proj	ects (C)		20	%				10	
2	Sem	ester Er	nd Exan	ninatio	n (SEE)			100	%				50	

ASSESSMENT STRATEGY:

3. In Laboratory Courses where (B) and (C) are not the components of the assessment pattern, then (A) will have 100% weightage (50 Marks).

Assessment Mode: Weekly Assessment of Laboratory Work (50 Marks) - the marks will be awarded based on the Continuous Internal Assessment (Weekly Assessment, each of 25 marks) of the students in each laboratory session. The average of all the marks obtained across the sessions will be the Final CIA marks.

4. In Laboratory Courses where (C) is not a component of the assessment pattern, then (A) will have 50% weightage (25 Marks), and (B) will have 50% weightage (25 Marks).

Assessment Mode: The marks will be awarded based on the Continuous Internal Assessment (Weekly Assessment) (A) and One Laboratory Test (B).

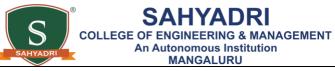
An Autonomous Institution MANGALURU

MANAGEMENT

- 5. In Weekly Assessment, the student will be evaluated in each laboratory session for 25 marks. The average marks obtained across all the experiments will be the marks obtained for (A).
- 6. A Laboratory Test, similar to the SEE exam is conducted towards the end of the Semester/Course, whichever is earlier. The obtained marks are scaled down to 25 Marks (B)

The Sum of marks obtained across (A) and (B) will be the Final CIA marks.

- In Laboratory Courses where (C) is a component of the assessment pattern, then assessment will be done by considering the weightages given above, i.e. (A) 25 Marks (Weekly Assessment), (B) 15 Marks (Laboratory Examination), (C) 10 marks (Open Ended Experiments/Mini Projects)
 - 8. The respective course instructor will design the assessment criteria for the said assessment components.
 - 9. The assessment components will be made known to the students by the respective Course Coordinators prior to the commencement of the Laboratory Work.


In all the cases, the assessments will be done based on the criteria designed by the Course Coordinator.

SEE QUESTION PAPER PATTERN:

- 0. All laboratory experiments should be included for practical examination, from which students are allowed to pick one experiment from the lot.
- 1. SEE shall be conducted for 100 Marks and the marks will be scaled down to 50.
- 2. General Marks Distribution: Procedure + Conduction + Viva = 20% + 50% + 30%.
- 3. Change of experiment is allowed only once and 20% of the marks allotted to the Procedure will be made ZERO (if a question carries two experiments, both should be changed). The evaluation will be done for 80% of the total maximum marks.

Suggested Learning Resources:

- Version Control with Git, 3rd Edition, by Prem Kumar Ponuthorai, Jon Loeliger Released October 2022, Publisher(s): O'Reilly Media, Inc.
- 15. Pro Git book, written by Scott Chacon and Ben Straub and published by Apress, https://gitscm.com/book/en/v2
- 16. https://infyspringboard.onwingspan.com/web/en/app/toc/lex_auth_0130944433473699842782_shared/overview
- 17. https://infyspringboard.onwingspan.com/web/en/app/toc/lex_auth_01330134712177459211926_shared/overview

REFERENCE WEB LINKS AND VIDEO LECTURES (E – RESOURCES):

18.

DATA VISUALIZATION USING R

(Effective from the Academic Year 2022 - 2023)

		IV SEMESTER			
Course (Code	CS42297CC	CIA Marks		50
Number	of Contact Hours/Week (L: T: P: S)	0:0:2:0	SEE Marks		50
Total Ho	ours of Pedagogy	20P	Exam Hours		03
		CREDITS – 1			
COURS	SE PREREQUISITES:				
19. в	asic Knowledge R programming and data	manipulation concep	ts.		
COURS	SE OBJECTIVES:				
20. U	nderstand the basic plots and major packag	ges available for plot	ting graphs in R.		
21. T	o develop small applications using R Prog	ramming			
TEACH	IING - LEARNING STRATEGY:				
Followin	g are some sample strategies that can be in	ncorporate for the Co	ourse Delivery		
22.	Chalk and Talk Method/Blended Mode Method	ethod			
23.	Power Point Presentation				
24.	Expert Talk/Webinar/Seminar				
25.	Video Streaming/Self-Study/Simulations				
26.	Peer-to-Peer Activities				
27.	Activity/Problem Based Learning				
28.	Case Studies				
29.	MOOC/NPTEL Courses				
30.	Any other innovative initiatives with respe	ect to the Course cont	tents		
	LIST	COF EXPERIME	ENTS		
Exp. No.	Experim		CO No.	Bloom's Taxonomy Level	
	1	PART-A			1
1	For a given set of training data exa Mean, Median, Variance, Standard the attributes using R programming	Deviation, Range	_		

SAHYADRI COLLEGE OF ENGINEERING & MANAGEMENT An Autonomous Institution MANGALURU

2	For a given set of training data examples stored in a .CSV file, compute the Mean, Median, Variance, Standard Deviation, Range and Quartiles of one of						
	the attributes using R programming.						
3	Write an R program to perform the following operations on strings: Concatenate two strings, compare two strings, Reverse the string and Check						
5	if a given string is a palindrome or not.						
	Write an R program to demonstrate the use of the following String						
4	manipulation functions in R: nchar, toupper, tolower, substr, grep, paste, strsplit, sprintf, cat and sub functions.						
	PART-B						
1	Write an R program to create the following basic plots: Scatter plot, Line graph, Bar plot and Histogram.						
2	Write an R program to create a 2D and 3D Pie chart with slice percentage & legend.						
3	Using the in-build Iris dataset and ggplot2 package, write an R program to create Scatter plot, Line graph and Bar plot with chart titles and axis titles.						
4	Write an R program to create Histogram and Box plots using ggplot2 package in R.						
5	Using the in-build mtcars dataset and lattice package, write an R program to create Bar plot, Scatter						
	plot, Histogram and Density plot.						
	COURSE OUTCOMES						
Upon co	mpletion of this course, the students will be able to:						
СО	Course Outcome Description		Bloom's Taxonomy				
No.	Course Outcome Description		Level				
CO1							
CO2							
CO3							
CO4							
CO5							
	CO-PO-PSO MAPPING	1					
СО	Programme Autoomes (PA)	Р	rogramme Specific				
No.	Programme Outcomes (PO) Ou						

COLLEGE OF ENGINEERING & MANAGEMENT An Autonomous Institution

	MANGALURU														
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1															
CO2															
CO3															
CO4															
CO5															
3: Substantial (High) 2: Modera						erate (N	(ledium))	1: Poor (Low)						
					Α	SSESS	MENT	STRAT	TEGY						
А	ssessn	ent will	be both	CIA an	d SEE.	Students	learnin	g will be	e assesse	d using	Direct a	and India	ect metho	ds:	
Sl. No.		Assessment DescriptionWeightage (%)						Max. Marks							
1	Cont	Continuous Internal Assessment (CIA)						100	%		50				
	Labo	Laboratory Work (A)						50	%		25				
	Labo	Laboratory Test (B)						30 %			15				
	Open Ended Experiments /Mini Projects (C)							20	%			1	10		
2	Semester End Examination (SEE)						100	%		50					

ASSESSMENT STRATEGY:

31. In Laboratory Courses where (B) and (C) are not the components of the assessment pattern, then (A) will have 100% weightage (50 Marks).

Assessment Mode: Weekly Assessment of Laboratory Work (50 Marks) - the marks will be awarded based on the Continuous Internal Assessment (Weekly Assessment, each of 25 marks) of the students in each laboratory session. The average of all the marks obtained across the sessions will be the Final CIA marks.

32. In Laboratory Courses where (C) is not a component of the assessment pattern, then (A) will have 50% weightage (25 Marks), and (B) will have 50% weightage (25 Marks).

Assessment Mode: The marks will be awarded based on the Continuous Internal Assessment (Weekly Assessment) (A) and One Laboratory Test (B).

- 33.In Weekly Assessment, the student will be evaluated in each laboratory session for 25 marks. The average marks obtained across all the experiments will be the marks obtained for (A).
- 34.A Laboratory Test, similar to the SEE exam is conducted towards the end of the Semester/Course, whichever is earlier. The obtained marks are scaled down to 25 Marks (B)

The Sum of marks obtained across (A) and (B) will be the Final CIA marks.

35. In Laboratory Courses where (C) is a component of the assessment pattern, then assessment will be done by considering the weightages given above, i.e. (A) - 25 Marks (Weekly Assessment), (B) - 15 Marks (Laboratory Examination), (C) - 10 marks (Open Ended Experiments/Mini Projects)

36. The respective course instructor will design the assessment criteria for the said assessment components.

37. The assessment components will be made known to the students by the respective Course Coordinators

prior to the commencement of the Laboratory Work.

In all the cases, the assessments will be done based on the criteria designed by the Course Coordinator.

SEE QUESTION PAPER PATTERN:

8. All laboratory experiments should be included for practical examination, from which students are allowed to pick one experiment from the lot.

YADRI

An Autonomous Institution MANGALURU

ENGINEERING & MANAGEMENT

- 9. SEE shall be conducted for 100 Marks and the marks will be scaled down to 50.
- 0. General Marks Distribution: Procedure + Conduction + Viva = 20% + 50% + 30%.

Change of experiment is allowed only once and 20% of the marks allotted to the Procedure will be made ZERO (if a question carries two experiments, both should be changed). The evaluation will be done for 80% of the total maximum marks.

REFERENCE WEB LINKS AND VIDEO LECTURES (E – RESOURCES):

1. Essentials of R with Data Analytics, Saroj Dahiya Ratnoo, Himmat Singh Ratnoo, Wiley (India), Low price edition. 2. https://elearn.nptel.ac.in/shop/iit-workshops/completed/data-visualization-with-r/

GitHub : AI-Powered Developer Platform

(Effective from the Academic Year 2023 - 2024)

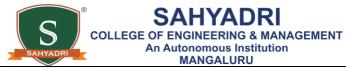
IV SEMESTER

Course Code	CS42297CA	CIA Marks	50					
Number of Contact Hours/Week (L: T: P: S)	0:0:2:0	SEE Marks	50					
Total Hours of Pedagogy	24	Exam Hours	03					
CREDITS – 1								

COURSE PREREQUISITES:

• Basic Knowledge of Programming.

COURSE OBJECTIVES:


- To familiar with basic command of Git
- To create and manage branches
- To understand how to collaborate and work with Remote Repositories
- To familiar with virion controlling commands

TEACHING - LEARNING STRATEGY:

Following are some sample strategies that can be incorporate for the Course Delivery

- 41. Chalk and Talk Method/Blended Mode Method
- 42. Practical Based Learning
- 43. Power Point Presentation
- 44. Expert Talk/Webinar/Seminar
- 45. Video Streaming/Self-Study/Simulations
- 46. Peer-to-Peer Activities
- 47. Activity/Problem Based Learning
- 48. Case Studies
- **49.** MOOC/NPTEL Courses
- **50.** Any other innovative initiatives with respect to the Course contents

List of Experiments

Sl. No.	MANGALURU										
	Setting Up and Basic Commands										
1											
1	Initialize a new Git repository in a directory. Create a new file and add it to the staging are	a and commit									
	the changes with an appropriate commit message.										
	Creating and Managing Branches										
	51. Create a new branch named "feature-branch." Switch to the "master" branc	h. Merge the									
2	"feature-branch" into "master."										
	52. Write the commands to stash your changes, switch branches, and then apply the stashed										
	changes.										
	Collaboration and Remote Repositories										
	53. Clone a remote Git repository to your local machine.										
3	54. Fetch the latest changes from a remote repository and rebase your local branch onto the update										
5	remote branch.										
	55. Write the command to merge "feature-branch" into "master" while providing a custom of										
	message for the merge.										
	Git Tags and Releases										
4	Write the command to create a lightweight Git tag named "v1.0" for a commit in your local repository.										
	Advanced Git Operations										
5	Write the command to cherry-pick a range of commits from "source-branch" to the curren	t branch.									
	Analysing and Changing Git History										
	56. Given a commit ID, how would you use Git to view the details of that specific commit,										
	including the author, date, and commit message?										
6	57. Write the command to list all commits made by the author "JohnDoe" between "2023-01-01"										
	and "2023-12-31."										
	58. Write the command to display the last five commits in the repository's history.										
	59. Write the command to undo the changes introduced by the commit with the ID "abc123".										
	COURSE OUTCOMES										
Upon com	pletion of this course, the students will be able to:										
CO		Bloom's									
CO	Course Outcome Description	Taxonomy									

& MANAGEMENT

								MANGAL	URU					
CO1	Use the basics commands related to git repository												CL3	
CO2	Create and manage the branches											CL3		
CO3	Apply commands related to Collaboration and Remote Repositories												CL3	
CO4	Use the commands related to Git Tags, Releases and advanced git operations													CL3
CO5	Analyse and change the git history													CL3
						CO-PC)-PSO	MAPPI	NG					
CO No.	Programme Outcomes (PO)										Sp	Programme Specific Outcome (PSO)		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2	3		3							1		
CO2	3	2	3		3							1		
CO3	3	2	3		3							1		
CO4	3	2	3		3							1		
CO5	3	2	3		3							1		
3: Substantial (High) 2: Modera								ate (Medium) 1: Poor (Lo					(Low)	
Assessm	nent wi	ll be bot	h CIA a	nd SEE		SSESSI ts learnin				g Direct	and Inc	lirect me	thods:	
Sl. No.	Assessment Description							Weightage (%) Max.			Marks			
1	Cont	Continuous Internal Assessment (CIA)						100 %			50			
	Laboratory Work (A)							50 %			25			
	Laboratory Test (B)							30 %			15			
	Open Ended Experiments /Mini Projects (C)							20 %			10			
2	Semester End Examination (SEE)							100 % 50				50		

ASSESSMENT STRATEGY:

60. In Laboratory Courses where (B) and (C) are not the components of the assessment pattern, then (A) will have 100% weightage (50 Marks).

Assessment Mode: Weekly Assessment of Laboratory Work (50 Marks) - the marks will be awarded based on the Continuous Internal Assessment (Weekly Assessment, each of 25 marks) of the students in each laboratory session. The average of all the marks obtained across the sessions will be the Final CIA marks.

61. In Laboratory Courses where (C) is not a component of the assessment pattern, then (A) will have 50% weightage (25 Marks), and (B) will have 50% weightage (25 Marks).

Assessment Mode: The marks will be awarded based on the Continuous Internal Assessment (Weekly Assessment) (A) and One Laboratory Test (B).

MANAGEMENT

- 62. In Weekly Assessment, the student will be evaluated in each laboratory session for 25 marks. The average marks obtained across all the experiments will be the marks obtained for (A).
- 63.A Laboratory Test, similar to the SEE exam is conducted towards the end of the Semester/Course, whichever is earlier. The obtained marks are scaled down to 25 Marks (B)

The Sum of marks obtained across (A) and (B) will be the Final CIA marks.

- 64. In Laboratory Courses where (C) is a component of the assessment pattern, then assessment will be done by considering the weightages given above, i.e. (A) 25 Marks (Weekly Assessment), (B) 15 Marks (Laboratory Examination), (C) 10 marks (Open Ended Experiments/Mini Projects)
 - 65. The respective course instructor will design the assessment criteria for the said assessment components.
 - 66. The assessment components will be made known to the students by the respective Course Coordinators prior to the commencement of the Laboratory Work.

In all the cases, the assessments will be done based on the criteria designed by the Course Coordinator.

SEE QUESTION PAPER PATTERN:

- 7. All laboratory experiments should be included for practical examination, from which students are allowed to pick one experiment from the lot.
- 8. SEE shall be conducted for 100 Marks and the marks will be scaled down to 50.
- 9. General Marks Distribution: Procedure + Conduction + Viva = 20% + 50% + 30%.
- **0.** Change of experiment is allowed only once and 20% of the marks allotted to the Procedure will be made ZERO (if a question carries two experiments, both should be changed). The evaluation will be done for 80% of the total maximum marks.

Suggested Learning Resources:

- 71. Version Control with Git, 3rd Edition, by Prem Kumar Ponuthorai, Jon Loeliger Released October 2022, Publisher(s): O'Reilly Media, Inc.
- 72. Pro Git book, written by Scott Chacon and Ben Straub and published by Apress, https://gitscm.com/book/en/v2
- 73. https://infyspringboard.onwingspan.com/web/en/app/toc/lex_auth_0130944433473699842782_shared/overview
- 74. https://infyspringboard.onwingspan.com/web/en/app/toc/lex_auth_01330134712177459211926_shared/overview